Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Steven Kim x
Clear All Modify Search

Soil disinfestation with steam has potential to partially replace fumigants such as methyl bromide, chloropicrin, and 1,3-dichloropropene because it is effective, safer to apply, and has less negative impact on the environment. Here, we compared the efficacy of steam and steam + mustard seed meal (MSM) to chloropicrin on soil disinfection, plant growth, and fruit yield in a strawberry (Fragaria ×ananassa) fruiting field. The MSM was applied at 3368 kg·ha−1 before the steam application. Steam was injected into a 3-m-wide reverse tiller that was set to till 30 to 40 cm deep. Soil temperatures at depths of 10, 20, 25, and 35 cm were monitored. Steam and steam + MSM treatments reduced the viability of purslane seeds and nutsedge tubers, microsclerotia density of Verticillium dahliae, propagule density of Pythium ultimum, cumulative weed densities, and biomass compared with the nontreated control. Moreover, the steam application was as efficacious as chloropicrin on these pests. The growth and fruit yield of strawberries grown on soils previously treated with the steam and steam + MSM treatments were similar to those in the chloropicrin treatment and were higher than those in the nontreated control. Our study indicated that steam, steam + MSM, and chloropicrin are equally effective at suppressing weeds and soilborne pathogens. These results suggest that the steam and steam + MSM treatment can be a practical alternative for soil disinfestation in conventional and organic strawberry fields.

Open Access

We address whether it is better for a producer to own harvesting equipment or hire a custom harvester to perform the job. A comparison of calculated purchase costs with the cost of hiring a custom operator leads to an estimate of the break-even acreage, which is used as a decision criterion. However, two risk factors must be included in the decision process: the date of harvest and the efficiency of the harvest operation. The affect of these factors may significantly alter the “real” costs of owning vs. hiring a custom operator and, therefore, change the decision reached by an individual grower.

Full access

Soil disinfestation with steam has been evaluated in strawberry fruiting fields as a nonchemical method of soil disinfestation; however, little is known about the use of steam for field production of strawberry daughter plants. The objective of this study was to compare daughter plant production in soils previously treated with steam compared to those treated with standard methyl bromide (MB) and chloropicrin (Pic) treatments. A prototype field steam applicator and a self-propelled diesel-fueled steam generator and applicator were tested at two high-elevation nurseries near Macdoel, CA, in Sept. 2018 and Aug. 2020, respectively. The steam application heated the soil above 60 °C for ≈60 minutes to a depth of 25 cm at both nurseries. The pest control efficacy of the steam applications against weeds, Verticillium spp., Tylenchulus semipenetrans, and Pythium ultimum were similar to that of MB:Pic. The stolons and daughter plants densities in fields with steam treatment were similar to those in fields with MB:Pic treatment. Therefore, we suggest that soil disinfestation with steam may be a viable method of producing healthy strawberry plants. However, more research is needed to verify plant sanitation and quality.

Open Access

Steam has long been used to disinfest greenhouse soils. However, there is increasing interest in expanding the use of steam for in-field soil disinfestation as an alternative to chemical fumigants. Previous studies demonstrated that allyl-isothiocyanate (AITC) reduced viability of weed seeds and plant pathogen propagules, but AITC has a low vapor pressure and is relatively immobile in soil. Heat has been used in the past to enhance the mobility of soil fumigants such as methyl bromide (i.e., “hot gassing”). The effect of steam heat on the mobility of AITC is unknown. The objective of this study was to investigate the potential synergistic effect of steam plus ATIC against weed seeds and a plant pathogen. AITC alone did not reduce the viability of the four weed species and the number of Verticillium dahliae microsclerotia. The steam + AITC treatment reduced the viability of V. dahliae at 12.5 and 18 cm distances by 82% and 88%, respectively, and knotweed and nettle seeds at 70 cm from injection point by 75% and 86%, respectively, from the center of microplots compared with steam alone. The results suggest that AITC and steam have a complementary effect on soilborne pests because steam increases the mobility of AITC.

Open Access

Geraniums are sensitive to ethylene during shipping and respond by abscising their petals. Treatment of stock plants with ethylene (ethephon) in order to increase cutting yield resulted in earlier flowering in Pelargonium × hortorum `Kim' and `Veronica', but did not result in increased susceptibility to petal abscission following exposure to 1.0 μL·L-1 ethylene. Treatment of `Kim', `Veronica', `Fox', and `Cotton Candy' with 1.0 μL·L-1 ethylene resulted in increased petal abscission within one hour, with `Fox' being the most sensitive and `Kim' the least. Pretreatment of florets with 1-MCP for 3, 6, 12, or 24 hours at concentrations of 0.1 or 1.0 μL·L-1 decreased petal abscission in all cultivars following exposure to 1.0 μL·L-1 ethylene. Treatment with 0.1 μL·L-1 1-MCP for 1 hour reduced petal abscission rates in ethylene treated florets to that of non-ethylene treated controls in all cultivars except Fox. `Fox' florets, which are more sensitive to ethylene, required 12 to 24 hours of exposure to 1-MCP to reduce petal abscission rates to that of control flowers. Pretreatment of geranium plants with 1-MCP can be used to reduce petal shattering during shipping. Chemical names used: 2-chloroethanephosphonic acid (ethephon); 1-methylcyclopropene (1-MCP).

Free access