Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: Steven H. Schwartzkopf x
Abstract
In the past, plant growth generally has been measured using destructive methods. This paper describes a nondestructive technique for continuously monitoring plant growth. The technique provides a means of directly and accurately measuring plant growth over both short and long time intervals. Application of this technique to the direct measurement of plant growth rates is illustrated using corn (Zea mays L.) as an example.
The use of computerized environmental control systems for greenhouses and plant growth chambers is increasing in frequency. Computerized systems provide the potential for more accurate environmental control, while at the same time allowing changes to be made more easily than with hard-wired mechanical control systems. The ease of changing allows switching sensor types, relocating sensors and resetting control parameters without significantly affecting the overall system design. Another advantage of computerized control systems is that they provide a method for recording environmental data as they simultaneously implement their programmed control algorithms. This data can subsequently be transferred to other computers for further processing and analysis. Computerized controls also support the possibility of implementing environmental control based on either mathematical models which simulate plant growth, or on actual monitored plant performance data such as nutrient uptake or leaf temperature. This paper discusses in detail these and other advantages of using computerized environmental control systems, as well as describing the problems and disadvantages associated with their implementation and use.
Abstract
Two methods of removing bacteria from hydroponic nutrient solution [ultraviolet (UV) radiation and submicronic filter] were evaluated for efficiency and for their effects on lettuce (Lactuca sativa L.) production. Both methods were effective in removing bacteria; but, at high intensity, the ultraviolet sterilizer significantly inhibited the production of plants grown in the treated solution. Bacterial removal by lower intensity UV or a submicronic filter seemed to promote plant growth slightly, but showed no consistent, statistically significant effect.
Abstract
Polyurethane foam plugs commonly are used as collars or supports to grow plants in solution culture. Despite their utility, these foam plugs can be quite toxic to plants, particularly to small seedlings. We have observed tissue injury in tests using plugs to support lettuce, red beet, and potato plants in solution culture. Typically, the injury is initiated on the hypocotyl or stem tissue in direct contact with the foam, and appears within 30 hr as a brownish discoloration on the tissue surface. This discoloration can be followed by complete collapse of affected tissue and eventual death of the seedling. When injury does not progress beyond surface browning, the seedling survives but growth is slowed. In this paper, we report on different treatments that can be used to remove the toxicity of these plugs so they can be used in plant research.