Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Steve George x
Clear All Modify Search
Full access

John J. Sloan, Wayne A. Mackay, Phil Colbaugh, Steve W. George and Sam Feagley

Excessive soil moisture in clay soils can cause poor aeration and adversely affect plant growth. Small [1 to 3 mm (0.039 to 0.118 inches)] and large [3 to 6 mm (0.118 to 0.354 inches)] diameter expanded shales (ExSh), quartz sand, sphagnum peatmoss (SPM), and cottonseed hulls (CH) were evaluated as soil amendments for Austin silty clay soil. A 3-inch (7.6-cm) layer of each amendment was incorporated to a depth of 6 inches (15.2 cm), resulting in a 1:1 mixture by volume. Pansies (Viola × wittrockiana `Crown Azure Blue') were grown from December to June, followed by scaevola (Scaevola aemula `New Wonder') from June to November for two growing seasons. Foliage quality and extent of flowering were evaluated biweekly. Pansy root weights and above-ground biomass were quantified at the end of each growing season. None of the amendments significantly affected pansy foliage quality or the number of blooms per plant. Small diameter ExSh and SPM decreased pansy nitrogen content the first year after application, but not the second. During the first growing season, when soils were frequently saturated due to excessive rainfall, pansy root weights were significantly higher in soils amended with the small and large diameter ExSh. Large diameter ExSh treatments significantly increased the survival rate of transplanted scaevola plants and also the quality of foliage and percent blossom coverage during both growing seasons. Cottonseed hulls also increased scaevola survival for both growing seasons, but did not consistently improve scaevola foliage quality or bloom coverage. Of the five amendments tested, large diameter ExSh consistently improved overall plant performance more than the other amendments.

Free access

David C. Zlesak, Vance M. Whitaker, Steve George and Stan C. Hokanson

Regional, replicated cultivar trials of landscape roses are an ongoing component of the Earth-Kind® program, which was started at Texas A&M University in the 1990s to support environmental landscape stewardship. The rose trials within the Earth-Kind program identify and promote the most regionally adapted rose cultivars and are conducted without fertilizers or pesticides and greatly reduced irrigation. Black spot (caused by Diplocarpon rosae Wolf) is the most serious disease of outdoor-grown roses worldwide as a result of the potential for rapid leaf yellowing and defoliation. Earth-Kind designated cultivars for the south–central United States and roses under trial in other regions or considered for future Earth-Kind trials (n = 73 roses) and two susceptible control cultivars were challenged with North American Races 3, 8, and 9 of D. rosae, which were previously characterized at the University of Minnesota. Young expanded leaves were inoculated using detached leaf assays. Lesion length (LL) was measured for susceptible reactions and cultivar ploidy was determined using root tip squashes. Diploid, triploid, and tetraploid cultivars (n = 20, 30, and 23, respectively) were identified, and race-specific resistances and partial resistances were also identified. Race-specific resistance was generally more prevalent in newer rose cultivars and rose cultivars more recently included in Earth-Kind trials. Nine cultivars were resistant to all three races (Brite Eyes™, ‘Grouse’, Home Run®, Knock Out®, Paprika™, Peachy Cream™, Pink Knock Out®, Rainbow Knock Out®, and Yellow Submarine™). Blushing Knock Out®, a sport of Knock Out®, was susceptible to Race 8. Partial resistance rank for LL was generally consistent across races for roses susceptible to multiple races. The application of these data includes: characterizing the minimum resistance level needed for roses to warrant inclusion in Earth-Kind field trials, the identification of additional race-specific resistance genes, identifying resistance-breaking isolates of D. rosae, understanding race composition in field trials based on infection patterns of key cultivars, selection of parents for resistance breeding efforts, and continued comparisons between LL and growing bodies of Earth-Kind field resistance data.

Free access

Wayne A. Mackay, Steve George, Jerry M. Parsons, Greg Grant, Tim D. Davis and Larry Stein

Free access

Wayne A. Mackay, Steve George, Tim Davis, Mike Arnold, Dan Lineberger, Jerry Parsons and Larry Stein

The Coordinated Educational Marketing Assistance Program (CEMAP) is one of the oldest marketing assistance programs for ornamentals in the United States. The goal of this program is to identify outstanding plants for Texas and to provide support for the nursery industry, thereby making plants with superior performance available to the people of Texas. The CEMAP program is a cooperative effort between the Texas nursery industry and Texas A&M Univ. The CEMAP Executive Board has eight individuals representing extension, research, and teaching plus two administrative liasions and the Industry Advisory Board has ≈50 members from all segments of the ornamentals industry in Texas. Funding for the CEMAP program comes from direct industry support and from the public through the sale of plant tags or other promotional materials which bear the Texas Superstars logo. The logo is trademarked and licensed to printing companies who handle the administration of royalties to the program. The Executive Board makes the final decision about which plants are designated Texas Superstars. Promotional support for the plants is provided by CEMAP through point of purchase materials and publicity through print, radio, and television. In addition, the Texas Nursery and Landscape Association in cooperation with the Texas Department of Agriculture are conducting a publicity campaign to inform the public about Texas Superstars.

Full access

John J. Sloan, Raul I. Cabrera, Peter A.Y. Ampim, Steve A. George and Wayne A. Mackay

Organic and inorganic amendments are often used to improve chemical and physical properties of soils. The objective of this study was to determine how the inclusion of light-weight expanded shale in various organic matter blends would affect plant performance. Four basic blends of organic growing media were prepared using traditional or alternative organic materials: 1) 75% pine bark (PB) + 25% sphagnum peatmoss (PM), 2) 50% PB + 50% wastewater biosolids (BS), 3) 100% municipal yard waste compost (compost), and 4) 65% PB + 35% cottonseed hulls (CH). Light-weight expanded shale was then blended with each of these mixtures at rates of 0%, 15%, 30%, and 60% (v/v). Vinca (Catharanthus roseus), verbena (Verbena hybrida), and shantung maple (Acer truncatum) were planted into the growing media after they were transferred into greenhouse pots. Vinca growth was monitored for 3 months before harvesting aboveground plant tissue to determine total biomass yield and elemental composition. Verbena growth was monitored for 6 months, during which time aboveground plant tissue was harvested twice to determine total biomass yield. Additionally, aboveground vinca plant tissue was analyzed for nutrients and heavy metal concentrations. In the absence of expanded shale, verbena and shantung maple trees produced more aboveground biomass in the 50-PB/50-BS blends, whereas vinca grew more biomass in the pure compost blends. Inclusion of expanded shale in the various organic matter blends generally had a negative effect on plant growth, with the exception of shantung maple growth in the 65-PB/35-CH blend. Reduced plant growth was probably due to a lower concentration of nutrients in the growing media. Macro- and micronutrient uptake was generally reduced by addition of expanded shale to the organic growing media. Results suggest that organic materials that have been stabilized through prior decomposition, such as compost or PM, are safe and reliable growing media, but expanded shale offers few benefits to a container growing medium except in cases where additional porosity is needed.

Full access

David C. Zlesak, Randy Nelson, Derald Harp, Barbara Villarreal, Nick Howell, Jason Griffin, Gaye Hammond and Steve George

Landscape roses (Rosa sp.) are popular flowering shrubs. Consumers are less willing or able to maintain landscape beds than in years past and require plants that are not only attractive, but well-adapted to regional climatic conditions, soil types, and disease and pest pressures. Marketing and distribution of rose cultivars occurs on a national level; therefore, it is difficult for U.S. consumers in the U.S. Department of Agriculture (USDA) Plant Hardiness Zones 3 to 5 to identify well-adapted, cold-hardy cultivars. Identifying suitable cultivars that have strong genetic resistance to pests and disease and that will tolerate temperature extremes without winter protection in the USDA Plant Hardiness Zones 3 to 5 is of tremendous value to consumers and retailers in northern states. Twenty landscape rose cultivars, primarily developed in north-central North America, were evaluated at five locations in the United States (three in the north-central United States, one in the central United States, and one in the south-central United States) using the low-input, multiyear Earth-Kind® methodology. Six roses had ≥75% plant survival at the end of the study and were in the top 50% of performers for overall mean horticultural rating at each of the three north-central U.S. sites: ‘Lena’, ‘Frontenac’, ‘Ole’, ‘Polar Joy’, ‘Sunrise Sunset’, and ‘Sven’. Five of these six roses met the same criteria at the central United States (exception ‘Lena’) and the south-central United States (exception ‘Polar Joy’) sites. Cultivar, rating time, and their interaction were highly significant, and block effects were not significant for horticultural rating for all single-site analyses of variance. Significant positive correlations were found between sites for flower number, flower diameter, and overall horticultural rating. Significant negative correlations were found between flower number and diameter within each site and also between black spot (Diplocarpon rosae) lesion size from a previous study and overall horticultural rating for three of the five sites. Cane survival ratings were not significantly correlated with overall horticultural rating, suggesting some cultivars can experience severe winter cane dieback, yet recover and perform well. Data from this study benefit multiple stakeholders, including nurseries, landscapers, and consumers, with evidence-based regional cultivar recommendations and breeders desiring to identify regionally adapted parents.

Free access

Salvadore J. Locascio, George J. Hochmuth, Fred M. Rhoads, Steve M. Olson, Alan G. Smajstrla and Ed A. Hanlon

Tomato (Lycopersicon esculentum Mill.) was grown with drip irrigation on an Arredondo fine sand and on an Orangeburg fine sandy loam to evaluate the effect of N and K time of application on petiole sap, leaf-N and -K concentrations, fruit yield, and to determine N and K sufficiency ranges in leaf tissue. On the sandy soil, N—K at 196-112 kg·ha-1 were applied 0%, 40%, or 100% preplant with the remainder applied in 6 or 12 equal or in variable applications in 12 weeks. With the variable application rate, most nutrients were applied between weeks 5 and 10 after transplanting. On the sandy loam soil that tested high in K, only N (196 kg·ha-1) was applied as above. Petiole sap K concentration declined during the season, but was not greatly affected by treatment. Petiole NO3-N concentrations decreased during the season from 1100 to 200 mg·L-1, and the decrease was greater with preplant N treatments. On the sandy soil, marketable fruit yields were lowest with 100% preplant, intermediate with 100% drip applied (no preplant N), and highest with 40% preplant and 60% drip applied. With 100% drip applied, yields were higher with 12 even applications than with either six even weekly applications or with 12 variable N and K applications. With 40% preplant, timing of application had little effect on yield. On the sandy loam soil in 1993, yields were highest with 100% preplant, intermediate with 40% preplant and 60% drip applied, and lowest with all N drip applied. In 1994 when excessive rains occurred, yields were similar with all preplant and with split N applications. Petiole N concentration was correlated with tomato yield, especially at 10 weeks after transplanting. The best correlation between sap-N and total yields occurred between 4 and 6 weeks at Gainesville and between 4 and 10 weeks at Quincy.

Open access

Derald Harp, Gaye Hammond, David C. Zlesak, Greg Church, Mark Chamblee and Steve George

Landscaping today involves the struggle to balance aesthetically pleasing plants while minimizing the impact on the environment, reducing water usage, decreasing fertilizer use, and eliminating or significantly reducing pesticide usage. Roses (Rosa sp.), although seen as challenging plants, remain the most popular flowering shrub in the United States. The identification of new cultivars that combine beauty, pest and disease resistance, and drought tolerance are important to Texas landscapes. Sixty roses were assessed over a 3-year period to determine flowering, drought tolerance, disease resistance, and overall landscape performance in minimal-input gardens in north central Texas. Atypical weather during the study had a significant impact on performance. A 2-year drought (2010–11) was accompanied by the hottest summer on record (2011), which included a record number of days of at least 100 °F or higher. As a result, supplemental irrigation was provided three times both summers. Roses generally fared well under these conditions and survived the drought. Flowering was most abundant during the spring and fall, and it was least abundant in the summer. Powdery mildew [PM (Sphaerotheca pannosa var. rosae)] was a minor problem. Nine of 60 cultivars developed no visible symptoms of PM during the study. Most PM occurred in Spring 2010, with very little found after June; none was found in 2011. Black spot [BS (Diplocarpon rosae)] was serious for some cultivars, but most were BS-free; RADrazz (Knock Out®) and Lady Banks White had no observed BS during the study. BS occurred mostly in May, June, and November. Overall landscape performance ratings were high, with 23 cultivars having a mean landscape performance rating equal to or better than the Belinda’s Dream standard. The best-performing cultivars were RADrazz (Knock Out), RADcon (Pink Knock Out®), RADyod (Blushing Knock Out®), WEKcisbaco (Home Run®), and Alister Stella Gray. This study was able to identify many other highly performing roses in north central Texas.

Full access

Wayne A. Mackay, Steve W. George, Tim D. Davis, Michael A. Arnold, R. Daniel Lineberger, Jerry M. Parsons, Larry A. Stein and Greg G. Grant

The Coordinated Educational and Marketing Assistance Program identifies outstanding landscape plants for Texas and provides support for the nursery industry, thereby making superior plants available to Texans. CEMAP funding comes directly from industry and from consumers through the sale of plant tags bearing the Texas Superstar logo. Additionally, the Texas Nursery and Landscape Association and Texas Department of Agriculture is conducting a Texas Superstar publicity campaign. An estimated $10 million in new plant sales have been generated during the first 10 years of this program. Because plants are chosen based on their performance under minimal input conditions, Texas SuperStars greatly reduce their impact on the urban environment.