Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Stephanie Rossi x
Clear All Modify Search

Heat stress symptoms in cool-season plants are characterized by loss of chlorophyll (Chl) and membrane stability, as well as oxidative damage. The objectives of this study were to determine whether foliar application of β-sitosterol, a naturally occurring plant metabolite, may promote heat tolerance by suppressing heat-induced leaf senescence as indicated by the maintenance of healthy turf quality (TQ), and Chl and membrane stability; and to determine its roles in regulating antioxidant metabolism in creeping bentgrass (Agrostis stolonifera). ‘Penncross’ plants were exposed to heat stress (35/30 °C day/night) optimal temperature conditions (nonstressed control, 22/17 °C day/night) for a duration of 28 days in environment-controlled growth chambers. Plants were foliar-treated with β-sitosterol (400 µM) or water only (untreated control) before heat stress, and at 7-day intervals through 28 days of heat stress. Plants treated with β-sitosterol had significantly greater TQ and Chl content, and significantly less electrolyte leakage (EL) than untreated controls at 21 and 28 days of heat stress. Application of β-sitosterol reduced malondialdehyde (MDA) content significantly at 21 and 28 days of heat stress, and promoted the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) from 14 through 28 days of heat stress. β-Sitosterol effectively improved heat tolerance through suppression of leaf senescence in creeping bentgrass exposed to heat stress in association with the alleviation of membrane lipid peroxidation and activation of the enzymatic antioxidant system.

Open Access

Heat-induced leaf senescence has been associated with stress-induced oxidative damage. The major objective of this study was to determine whether exogenous application of β-carotene may improve heat tolerance in creeping bentgrass (Agrostis stolonifera cv. Penncross) by suppressing leaf senescence and activating antioxidant metabolism. Plants were subjected to heat stress at 35/30 °C (day/night) or at the optimal temperature of 22/18 °C (day/night), and were treated with either β-carotene (1 mm) or water (untreated control) by foliar spraying every 7 days for 28 days in controlled-environment growth chambers. β-Carotene application suppressed heat-induced leaf senescence, as demonstrated by an increase in turf quality (TQ) and leaf chlorophyll content as well as a reduction in electrolyte leakage (EL). β-Carotene-treated plants had a significantly lower malondialdehyde (MDA) content and significantly greater activity of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) from 14 through 28 days of heat stress, and ascorbate peroxidase (APX) activity from 21 through 28 days of heat stress. These findings suggest that β-carotene may promote heat tolerance by enhancing antioxidant activity to suppress leaf senescence.

Open Access

Heat stress-induced or stress-accelerated leaf senescence is related to the accumulation of ethylene and loss of chlorophyll in cool-season grass species. The objective of this study was to determine whether foliar-spraying the ethylene inhibitor, aminoethoxyvinylglycine (AVG), may suppress heat-induced leaf senescence through effects on chlorophyll synthesis and degrading enzymes in creeping bentgrass (Agrostis stolonifera). Plants were maintained in environmentally controlled growth chambers under non-stress (22/17 °C day/night) or heat stress (35/30 °C day/night) temperature conditions for 25 days, and turf quality, electrolyte leakage, and chlorophyll content were measured to assess the extent of leaf senescence. Activities of chlorophyll-synthesizing and chlorophyll-degrading enzymes were quantified to determine whether AVG may regulate chlorophyll metabolism. Plants were foliar-sprayed with 25 µm AVG before and during heat stress at 7-day intervals. From 21 through 25 days of heat stress, AVG-treated plants had significantly higher turf quality and chlorophyll content, whereas electrolyte leakage was significantly lower in comparison with untreated controls. The activity of a chlorophyll-synthesizing enzyme, porphobilinogen deaminase, was significantly increased in AVG-treated plants at 21 days of heat stress. The activity of chlorophyll-degrading enzymes was significantly lower in plants treated with AVG from 14 through 25 days of heat stress for peroxidase, from 21 through 25 days of heat stress for pheophytinase, and at 25 days of heat stress for chlorophyllase. AVG may have suppressed heat-induced leaf senescence by regulating chlorophyll metabolic activities in cool-season grass species.

Open Access

Effects of amino acids and nitrogen on plant regrowth or recovery from drought stress remain largely unknown. The objectives of this study were to examine how gamma-aminobutyric acid (GABA) or proline, alone and in combination, or inorganic nitrogen [ammonium nitrate (NN)] may differentially affect turf performance during drought stress and rewatering, and to determine which specific endogenous amino acids regulated by GABA, proline, or NN priming were associated with plant tolerance to drought stress and postdrought recuperation in cool-season grass species. Creeping bentgrass (Agrostis stolonifera cv. Penncross) planted in porous ceramic fritted clay medium were exposed to well-watered conditions or drought stress by withholding irrigation for 21 days in growth chambers. Plants were treated with water (untreated control), GABA, or proline alone and in combination, or NN through foliar spray before drought stress and every 7 days during the 21-day stress period. For postdrought recovery, at 21 days of drought treatment, plants were rewatered for 14 days to return soil water content to prestress levels. Plants treated with GABA or proline alone or in combination maintained higher turf quality (TQ), dark green color index (DGCI), and stolon length by 21 days of drought stress, whereas proline-treated plants also maintained higher leaf relative water content (RWC) during drought as well as longer stolon length during rewatering. Plants treated with NN maintained higher TQ and leaf RWC during drought and had improved percent canopy cover, DGCI, and stolon length during postdrought rewatering. Accumulation of endogenous amino acids under drought stress, including proline and alanine, for proline-treated creeping bentgrass may have contributed to the enhancement of drought tolerance and postdrought regrowth. Nitrogen-enhanced accumulation of GABA, proline, and glutamic acid may have played a role in active amino acid assimilation and subsequent postdrought regrowth. Results from this study indicate that GABA or proline were mainly effective in promoting the tolerance of creeping bentgrass to drought stress while inorganic NN was effective in promoting rapid postdrought recovery and regrowth potential through the activation of amino acid metabolism. Endogenous amino acids, including GABA, proline, alanine, and glutamic acid, may be used as biomarkers to select for drought-tolerant plants and biostimulant components for improvement of drought stress tolerance and poststress recovery in cool-season turfgrass species.

Open Access