Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Stefania De Pascale x
Clear All Modify Search
Free access

Youssef Rouphael, Giampaolo Raimondi, Rosanna Caputo and Stefania De Pascale

Implementing nutrient management strategies in soilless culture, which improve water use efficiency (WUE) and limit the loss of eutrophying elements without affecting crop performance, is a priority for the floriculture industry. The aim of the current research was to assess the effect of two nutrient management strategies, based on electrical conductivity (EC) or nitrate-nitrogen (N-NO3 ) concentration control on plant growth, ornamental quality, plant–water relations, mineral composition, and WUE of greenhouse Hippeastrum grown in semiclosed soilless system. The recirculating nutrient solution was discharged whenever a threshold EC value of 3.0 dS·m−1 was reached (EC-based strategy), or when N-NO3 concentration decreased below the limit of 1.0 mol·m−3 (nitrate-based strategy). There were no significant differences in terms of plant growth parameters, stomatal resistance, leaf water relations, and macronutrient composition in plant tissues between the two nutrient management strategies. In the EC- and the nitrate-based strategies, the recirculating nutrient solution was flushed 10 and 5 times, respectively. The water loss (W L) and the total water use (W use) in the EC-based strategy were significantly higher by 261.1% and 61.5%, respectively, compared with the N-NO3 -based strategy. In contrast with the EC-based strategy, the adoption of the N-NO3 -based strategy significantly minimized the nitrate, phosphate, and potassium emissions to the environment. The effective WUE of the system (WUES) recorded in the N-NO3 -based strategy was higher by 55.9% compared with the one recorded with the EC-based strategy.

Free access

Stefania De Pascale, Albino Maggio, Celestino Ruggiero and Giancarlo Barbieri

We irrigated field-grown celery (Apium graveolens L. var. dulce [Mill.] Pers. 'Tall Utah') with four concentrations of saline water, NSC (nonstressed control), SW1, SW2, and SW3, corresponding to EC of 0.5, 4.4, 8.5, and 15.7 dS·m-1, respectively, plus a nonirrigated control (NIC) and investigated the effects of the treatments on water relations, yield and ion content. In addition, we compared simultaneously plant response to both salt and drought stress by using a modified version of the threshold-slope model. Increasing salinity of the irrigation water reduced fresh and dry weights of the shoots, but increased the dry matter percentage in shoots. The marketable yield was moderately affected by salinity (25% reduction at EC 8.5 dS·m-1). In contrast, a severe water stress dramatically decreased the marketable yield from 23 t·ha-1 (average of the irrigated treatments) to <7 t·ha-1 (nonirrigated control). Na+ and Cl- concentrations increased in salinized plants whereas nitrogen content, K+, Ca2+, and Mg2+ concentrations decreased upon salinization. Midday leaf water potentials (Ψt) decreased from -1.48 MPa (0.5 dS·m-1) to -2.05 MPa (15.7 dS·m-1) and - 2.17 MPa (nonirrigated control), though the reduction in leaf cellular turgor was less severe. The maintenance of high leaf cellular turgor was positively correlated to a decrease in osmotic potential and to an increased bulk modulus of elasticity. These results indicate that it is possible to irrigate celery with saline water (up to 8.5 dS·m-1) with acceptable losses in marketable yield and confirmed that in the field, this species has the ability to efficiently regulate water and ion homeostasis. In the absence of irrigation, celery plants were unable to cope with the drought stress experienced, although this was comparable, in terms of soil water potential, to the one caused by saline irrigation.

Free access

Stefania De Pascale, Celestino Ruggiero, Giancarlo Barbieri and Albino Maggio

Production of vegetable crops can be limited by saline irrigation water. The variability of crop salt tolerance under different environmental conditions requires species-specific and environment-specific field evaluations of salt tolerance. Data on field performances of vegetable crops grown on soils that have been irrigated with saline water for many years are lacking. In this study we analyzed the long-term effect of irrigation with saline water on soil properties and on responses of field-grown pepper (Capsicum annuum L.) plants in these soils. Yield, gas exchanges, water relations, and solute accumulation were measured in plants grown under three different irrigation treatments: a nonsalinized control (ECw = 0.5 dS·m-1) and two concentrations of commercial sea salt, corresponding to ECw of 4.4 and 8.5 dS·m-1, respectively. In addition, a nonwatered drought stress treatment was included. Irrigation water with an EC of 4.4 dS·m-1 resulted in 46% reduction in plant dry weight (leaves plus stem) and 25% reduction in marketable yield. Increasing the electrical conductivity of the irrigation water to 8.5 dS·m-1 caused a 34% reduction in plant dry weight and a 58% reduction in marketable yield. Leaf and root cellular turgor and net CO2 assimilation rates of leaves in salt-stressed plants decreased along with a reduction in leaf area and dry matter accumulation. High concentrations of Na+ and Cl- in the irrigation water did not significantly alter the level of K+ in leaves and fruit. In contrast, drought stressed plants had higher concentrations of leaf K+ compared to well watered control plants. These results indicate that Na+ and K+ may play similar roles in maintaining cellular turgor under salinity and drought stress, respectively. The regulation of ion loading to the shoots was most likely functionally associated with physiological modifications of the root/shoot ratio that was substantially smaller in salinized vs. drought stressed plants. From an agronomic perspective, irrigation with moderately saline water (4.4 dS·m-1) it is recommendable, compared to no irrigation, to obtain an acceptable marketable yield in the specific environment considered.

Free access

Chiara Cirillo, Youssef Rouphael, Rosanna Caputo, Giampaolo Raimondi and Stefania De Pascale

Bougainvillea is widely used as flowering shrub in gardening and landscaping in the Mediterranean region characterized by limited water supply. The evaluation of deficit irrigation as a possible technique to improve water productivity and selection of genotypes that can better withstand soil water deficits are essential for sustainable production. A greenhouse experiment was conducted to determine the effects of deficit irrigation on three potted Bougainvillea genotypes [B. glabra var. Sanderiana, B. ×buttiana ‘Rosenka’, B. ‘Lindleyana’ (=B. ‘Aurantiaca’)] grown in two shapes, globe and pyramid, on agronomical and physiological parameters. Irrigation treatments were based on the daily water use (100%, 50%, or 25%). The shoot, total dry biomass, leaf number, leaf area, and macronutrient [nitrogen (N), phosphorus (P), and potassium (K)] concentration decreased in response to an increase in water stress with the lowest values recorded in the severe deficit irrigation (SDI) treatment. At 160 days after transplanting (DAT), the percentage of total dry biomass reduction caused by irrigation level was lower in B. ×buttiana ‘Rosenka’ compared with B. glabra var. Sanderiana and B. ‘Lindleyana’ (=B. ‘Aurantiaca’). At 160 DAT, the flower index increased in response to an increase in water stress with the highest values recorded under both moderate deficit irrigation (MDI) and SDI for B. ×buttiana ‘Rosenka’. The biomass water use efficiency (WUE) increased under water stress conditions with the highest values recorded in B. glabra var. Sanderiana and B. ×buttiana ‘Rosenka’ grown under MDI (average 1.43 and 1.25 g·L−1, respectively) and especially with SDI (average 1.68 and 1.36 g·L−1, respectively). A number of tolerance mechanisms such as increase in stomatal resistance, decrease in leaf water potential, and decrease in leaf osmotic potential have been observed, especially under SDI. The MDI treatment can be used successfully in Bougainvillea to reduce water consumption while improving the overall quality and WUE, whereas the genotypes B. glabra var. Sanderiana and B. ×buttiana ‘Rosenka’ could be considered suitable for pot plant production.

Full access

Stefania De Pascale, Luisa Dalla Costa, Simona Vallone, Giancarlo Barbieri and Albino Maggio

Irrigation is a vital component of the world agriculture. It is practiced worldwide on ≈270 million hectares and it consents to produce 40% of our total food. Agricultural water consumption accounts for 70% of total freshwater use. The competition for this precious resource is increasing tremendously. Therefore, it is becoming critically important to optimize agricultural water use efficiency (WUE) defined as the ratio of crop yield over the applied water. This requires a shift from maximizing productivity per unit of land area to maximizing productivity per unit of water consumed. To maximize WUE it is necessary to conserve water and to promote maximal crop growth. The former requires minimizing losses through runoff, seepage, evaporation, and transpiration by weeds. The latter objective may be accomplished by planting high-yielding crops/cultivars well adapted to local soil and climatic conditions. Optimizing growing conditions by proper timing of planting and harvesting, tillage, fertilization, and pest control also contribute to improve crop growth. Most of these techniques refer to proven technology, whose implementation and/or fine-tuning in current farming systems may tremendously improve water management efficiency. In this paper, after discussing the importance of irrigation in agriculture, we will introduce basic concepts that define crop WUE and will finally review the means to improve irrigation efficiency in field vegetable crop production.