Search Results
You are looking at 1 - 10 of 20 items for
- Author or Editor: Stacy A. Bonos x
The identification of turfgrasses with salinity tolerance will be important for the successful implementation of saline irrigation water use on turfgrass sites. Salinity tolerance in turfgrasses has been evaluated using different techniques, including hydroponic and overhead irrigation methods. This study compared turfgrass response and efficiency of three different salinity screening methods: hydroponic, an overhead irrigation greenhouse method, and a field screening method. There was a significant correlation among all three methods for percent green ratings and a significant correlation between the two greenhouse techniques for dry clipping weights, dry shoot weights, and dry root weights. A difference in magnitude was observed between methods. The overhead-irrigated greenhouse and field methods had lower percent green value ratings than the hydroponic method. However, similar rankings among perennial ryegrass clones were found between methods indicating that numerous methods can be used to screen turfgrass germplasm for salinity tolerance with similar results. The cost, time, and available area required and reliability varied depending on the method with the field screening requiring the most area (929 cm2 per plant) and cost ($23.18 per plant) and the hydroponic method requiring the most time (48.3 min per plant). However, these results indicate any of these methods should be sufficient to screen germplasm for salinity tolerance. This information will be useful to plant breeding programs choosing selection methods for germplasm screening.
The apomictic breeding behavior of Poa pratensis L. provides an opportunity to study many unique genotypes that can vary dramatically in characteristics such as disease resistance, stress tolerance and growth habit. The classification of Kentucky bluegrass into types is based on common growth and stress performance characteristics gathered from field turf trials. These classification types include the Compact, Bellevue, Mid-Atlantic, BVMG (`Baron, `Victa', `Merit', and `Gnome'), Common, and Aggressive types. A spaced-plant nursery trial was established in May 1996 to quantify morphological and growth characteristics of 45 cultivars and selections representing the major types of Kentucky bluegrass. Plant height, panicle height, flag leaf height and length, subtending leaf length and width, rhizome spread, and longest extending rhizome were measured 10 days after anthesis. Compact type cultivars had a lower, more prostrate growth habit than the Common, Mid-Atlantic, and Bellevue types. Mid-Atlantic type cultivars had a wider rhizome spread than Compact type cultivars. Principal component analysis of morphological measurements made on spaced-plants supports the classification types of the Common, Compact, Bellevue, Mid-Atlantic, and BVMG, but not necessarily the Aggressive type.
Kentucky bluegrass (Poa pratensis L.) is an important facultative apomictic temperate perennial grass species used for both forage and cultivated turf. Through apomixis, this species is able to propagate diverse and odd ploidy levels, resulting in many genetically distinct phenotypes. A wide range of diverse cultivars and accessions of kentucky bluegrass have been previously characterized based on common turf performance or morphological characteristics as well as by random amplified polymorphic DNA (RAPD) markers. Although previous characterization efforts have provided valuable information, the use of both morphological characteristics and RAPD markers for genetic diversity analysis has limitations. In the current report, we developed and characterized 88 novel microsatellite markers for kentucky bluegrass. Polymorphism for each marker was assessed in 265 kentucky bluegrass cultivars, experimental selections, collections, and hybrids. The number of alleles for individual microsatellites ranged from four to 81 with an average of 38.3 alleles per simple sequence repeat. These polymorphic microsatellite markers would be useful tools for investigating genetic diversity, creation of genetic linkage maps, assessment of levels of apomixis in cultivars and experimental varieties, and identification of aberrant progeny in apomictic kentucky bluegrass breeding programs.
Drought is a major factor limiting plant growth, which has been associated with the accumulation of absicsic acid (ABA) in various species. The objective of the study was to determine the relationship between ABA accumulation and drought tolerance for kentucky bluegrass (Poa pratensis L.) during short-term drought stress. Eight kentucky bluegrass cultivars (`Midnight', `A82-204', `RSP', `Alpine', `Moonlight', `Brilliant', `Washington', and `Baruzo') were subjected to drought stress in a growth chamber. Water relations, gas exchange rate, and ABA content of leaves were determined at various times during drought stress. Turf quality decreased with drought duration for all eight cultivars. Leaf ABA content increased linearly with drought stress within 11 days of treatment; the rate of the increase was negatively related to the rate of turf quality decline. The rate of ABA accumulation during drought stress was positively correlated with the rates of decrease in turf quality (r 2 = 0.6346), increase in electrolyte leakage (r 2 = 0.7128), and decrease in relative water content (r 2 = 0.5913). There were highly significant negative correlations between ABA content and leaf water potential (r 2 = 0.9074), stomatal conductance (r 2 = 0.6088), transpiration rate (r 2 = 0.6581), net photosynthesis rate (r 2 = 0.6956), and a positive correlation between ABA content and electrolyte leakage (r 2 = 0.7287). The results indicate that drought tolerance is negatively related to ABA accumulation during shortterm drought stress. ABA accumulation in response to drought stress could be used as a metabolic factor to select for drought tolerance in kentucky bluegrass.
Six selections of Kentucky bluegrass (Poa pratensis L.) cultivars, selected based on their drought tolerance under field and growth chamber conditions in New Brunswick, N.J., were evaluated for salt tolerance based on yield and growth rates at eight soil water salinities [2 (control), 6, 8, 10, 12, 14, 18, and 22 dSm-1] from Apr. to Sept. 2005 in Riverside, Calif. Cultivars Baron and Brilliant were selected as drought sensitive and `Cabernet', `Eagleton', and `Midnight' were selected as drought tolerant. A Texas × Kentucky bluegrass (Poa arachnifera × Poa pratensis) hybrid selection (identified as A01-856) developed for improved drought and heat tolerance was also included. Vegetative clones were established in a randomized complete-block design with three replications, each containing 11 clones. Cumulative biomass and clone diameters were measured over time to evaluate relative yields and growth rates for the six cultivar selections. Based upon maximum absolute biomass production as a function of increasing EC, the order of production was `Baron' > `Brilliant' > `Eagleton' > `Cabernet' ≥ `Midnight' > A01-856. Yield relative to the non-saline control (2 dSm-1) for each cultivar was similar, except that the differences between cultivars were less pronounced, and `Baron' slightly outperformed `Brilliant'. Clone area expansion rates were analyzed with a phasic growth model and beta, the intrinsic growth rate of the exponential phase parameter, significantly varied with salinity. Ranking of cultivars, based on expansion rates, was similar to that based on cumulative biomass. Salinity tolerance in this experiment did not appear to be related to the observed ranking for drought tolerance.
The apomictic breeding behavior of Kentucky bluegrass (Poa pratensis L.) results in many unique cultivars. A classification system was previously developed to characterize the large number of Kentucky bluegrass cultivars into different types. However, many new cultivars have been released since the last refinement of the classification system. The objectives of this study were to determine differences in morphological and agronomic characteristics among select Kentucky bluegrass cultivars representing the major classification types and to determine broad-sense heritability estimates for important morphological (plant height, panicle length, flag leaf height, and flag leaf length and width) and agronomic (rhizome spread) traits in Kentucky bluegrass. A spaced-plant nursery trial was established in the spring of 2003 at Adelphia, NJ. One hundred seventy-three cultivars and selections were planted in a randomized complete block design with three replications. The morphological and agronomic traits listed were measured on spaced plants. High Density type cultivars (formerly the Aggressive type cultivars) had the most prostrate growth habit with plant heights of 33 and 43 cm in 2004 and 2005, respectively. Mid-Atlantic and Texas × Kentucky bluegrass hybrids had the widest rhizome spread (Mid-Atlantic = 73 and 121 cm; Texas × Kentucky bluegrass hybrids = 72 and 122 cm) in 2004 and 2005, respectively. Broad-sense heritability estimates were high for plant height (H = 0.84), panicle length (H = 0.88), flag leaf height (H = 0.85), and rhizome spread (H = 0.85); moderate for flag leaf length (H = 0.71); and low for flag leaf width (H = 0.11). This study characterizes new cultivars into respective groups and identifies the genetic inheritance of important morphological and agronomic traits in Kentucky bluegrass.
Brown patch, caused by Rhizoctonia solani Kühn, is a devastating disease of tall fescue (Festuca arundinacea Schreb.). Developing genetic resistance is a viable long-term control strategy; however, the genetic mechanism of brown patch resistance in tall fescue is not known. The objectives of this study were to determine the broad-sense heritability and stability analysis of brown patch resistance in tall fescue. To complete these objectives, 230 tall fescue genotypes were arranged in a randomized complete block design with six clonal replications at two locations and evaluated for brown patch resistance over 2 years. Two isolates of R. solani were used to inoculate both field trials at a rate of 0.8 g·m−2 of prepared inoculum. The lack of complete resistance and the observation of a continuous distribution of phenotypes suggest that brown patch resistance is quantitatively inherited. The broad-sense heritability estimates (0.25 on a single plant basis and 0.74 on 12-plant clonal mean basis) indicate that resistance is influenced by the genotype and also illustrate the importance of replication in selecting for brown patch resistance in tall fescue. Stability analysis resulted in the identification of tall fescue genotypes that were stable over multiple environments for brown patch resistance.
Fine fescues (Festuca sp.) are a group of species that require fewer inputs, such as fertilizer, than other cool-season species managed for turf. They are adapted to infertile, acidic soils; shade; and drought. One area that poses additional challenges is the lack of weed control options for fine fescues during establishment from seed. Mesotrione is a herbicide that provides preemergence control of many broadleaf and grassy weeds, such as annual bluegrass (Poa annua), but is currently not labeled for use in fine fescues at seeding. The objectives of this research were 1) to use a recurrent selection technique to develop mesotrione-tolerant chewings fescue (Festuca rubra ssp. commutata), hard fescue (Festuca brevipila), and strong creeping red fescue (F. rubra spp. rubra); and 2) to conduct field trials to compare the new selections to commercially available cultivars and experimental lines not selected for tolerance to mesotrione. Progress was made after each of the three generations of recurrent selection. The top statistical grouping of entries for injury following application of mesotrione at the 8-oz/acre rate included all the third-generation (G3) hard fescues, all the G3 chewings fescues, and the G3 strong creeping red fescue STB1 Composite. After three generations, selections of hard, chewings, and strong creeping red fescues had equivalent or better tolerance to mesotrione than tall fescue (Festuca arundinacea) and kentucky bluegrass (Poa pratensis) cultivars, which are on the label for safe use at seeding. These new selections would provide turf managers an option to control weeds using mesotrione during seedling establishment of fine fescues.
Annual bluegrass (Poa annua L.) is a problematic weed in Kentucky bluegrass (Poa pratensis L.). Bispyribac-sodium herbicide can effectively control established annual bluegrass in other cool-season turfgrasses, but unacceptable injury to Kentucky bluegrass has been reported. However, only a few Kentucky bluegrass cultivars have been evaluated. The objective of this study was to determine the extent of intraspecific variability among Kentucky bluegrass cultivars and selections to sequential applications of bispyribac-sodium herbicide. Field experiments were conducted in 2004 and 2005 in New Jersey to determine the response of 55 Kentucky bluegrass cultivars and selections to bispyribac-sodium. The herbicide was applied at 188 g·ha−1 followed 3 weeks later by a second application of 281 g·ha−1. Kentucky bluegrass injury ranged from 8% to 93% 8 weeks after initial treatment (WAIT). ‘Blackstone’, ‘Serene’, and A98-962 were the most tolerant to bispyribac-sodium, exhibiting less than 20% injury 8 WAIT. Conversely, ‘Washington’, 95AN-10, and ‘Avalanche’ were the most susceptible with up to 93% injury 8 WAIT. The range in tolerance to bispyribac-sodium within Kentucky bluegrass indicates the potential for the identification and development of cultivars with improved tolerance to bispyribac-sodium herbicide.
Kentucky bluegrass (Poa pratensis L.) is an important facultative apomictic temperate perennial grass species used for both forage and cultivated turf. Through apomixis, this species is able to propagate diverse and odd ploidy levels, resulting in many genetically distinct phenotypes. A wide range of diverse cultivars and accessions of kentucky bluegrass have been previously characterized based on pedigree, common turf performance, and morphological characteristics to create a kentucky bluegrass cultivar classification system. The objectives of the current study were to assess the amount of genetic divergence among kentucky bluegrass cultivars, experimental selections, and plant collections and revise/update the original pedigree, turf performance, and morphological characteristics kentucky bluegrass classification system using recently described kentucky bluegrass microsatellite [simple sequence repeat (SSR)] markers. In this study, 247 kentucky bluegrass cultivars, experimental selections, and collections were genotyped using 25 SSR markers. SSR markers showed a strong correlation between genetic relatedness as assessed by molecular markers and the original kentucky bluegrass classification system and also provided justification for a revision/update of the classification system. Traditional classification types that were supported by the current SSR analysis include BVMG, Compact, Compact-America, Julia, Mid-Atlantic, Midnight, and Shamrock types. Newly proposed classification types included Cynthia, Jefferson/Washington, Limousine, P-105, Sydsport, and three Eurasian types. The majority of cultivars, experimental selections, and collections were uniquely identified with the current set of SSR markers. Genetic relationships of individuals as assessed by SSR markers closely matched known pedigrees. The current set of SSR markers can be used to rapidly genotype and assign new cultivars/accessions to kentucky bluegrass classification types and assess genetic relatedness among individuals and should be considered for use in a kentucky bluegrass plant variety protection program.