Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Sonja L. Maki x
Clear All Modify Search

Endogenous gibberellins of chrysanthemum [Dendrathema×grandiflorum (Ramat) cv. Bright Golden Anne] were characterized in preparation for quantification of endogenous gibberellins in apices under control and CuSO4 spectral filters. Expanding shoots were separated into young expanding leaves and apices. Methanolic extracts of young expanding leaves were purified by solvent partitioning, PVPP column chromatography, and reversed-phase high performance liquid chromatography. Two bioactive regions corresponding to the HPLC retention times of GA and GA19 standards were detected in fractions using the recently developed non-dwarf rice bioassay. Dideuterated internal standards of GA12, GA53, GA19, GA20, and GA1 were added to similar extracts of shoot apices. The presence of endogenous GA53, GA19, GA20, and GA1 in chrysanthemum apices was confirmed by isotope dilution using gas chromatography–mass spectrometry-selected ion monitoring and Kovats retention indices. Ions for the deuterated internal standard of GA12 were detected, but not for endogenous GA12. The above results demonstrate that the early 13-hydroxylation pathway operates in chrysanthemum.

Free access

The gibberellin biosynthesis inhibitor, ancymidol, was used during micropropagation of Hosta `Blue Vision'. Shoot growth and bud division was monitored every 2 weeks over an 8-week period in media containing 1 μm benzyladenine (BA) and various levels of ancymidol (0, 0.1, 0.32, 1 and 3.2 μm). Ancymidol prolonged bud division from 2 to 6 weeks and increased the total number of buds produced. Shoots grown in medium containing ancymidol had greater fresh weight, shorter-broader leaves and less dry weight than those grown without ancymidol. Reduced dry weight of buds grown in the presence of ancymidol was correlated to the depletion of sugars in the medium. A bioassay using `Saturn' tall rice revealed that ancymidol was active for the entire 8-week culture period.

Free access

Plants grown in far red (FR) light deficient environments are typically shorter because of short internodes, resembling plants treated with GA biosynthesis inhibitors. The role of GAs in the reduction of stem elongation of `Bright Golden Anne' chrysanthemum [Dendranthem ×grandiflora (Ramat.) Kitam. (syn. Chrysanthemum ×morifolium Ramat.)] grown in FR light deficient (-FR) environment was investigated by following the response of chrysanthemums grown in - FR environment to exogenous application of GA1, GA19, or GA20, and the metabolism of GA12 and GA19 in -FR or +FR environment. FR light deficient environment resulted in 25% to 30% shorter plants than in +FR environment. Final height of GA1- and GA20-treated plants followed a quadratic pattern while that of GA19 treated plants followed a linear pattern as the dosage increased from 0 to 50 μg/apex. The response to GA1 was the greatest followed by GA20 and GA19, regardless of the light environment. Application of GA1 (50 μg/apex) increased final height by 65% compared with no GA (0 μg/apex) application under either +FR or -FR light environment, suggesting the response to GA1, which is the active form, remained the same. Responses to GA19 and GA20 declined under -FR light. [14 C]GA12 and [14C]GA19 metabolized slowly in the -FR environment suggesting that the turnover of GAs may have caused in part the lower response to GA19. Although metabolism of GA1 under -FR environments was not investigated, observations with GA1 application experiments support that -FR environment may have enhanced inactivation of GA1. Chemical name used: gibberellic acid (GA).

Free access