Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Songlin Yu x
Clear All Modify Search
Full access

Fengyun Zhao, Junli Sun, Songlin Yu, Huaifeng Liu and Kun Yu

Aeration through subsurface drip irrigation (SDI) can promote plant growth and increase crop yield; however, more research is focused on annual crops, and there are few studies on perennial crops. We have studied a new type of SDI (SDI with tanks) suitable for cultivation and production of perennial fruit trees and photovoltaic aeration device in greenhouse. The results showed that aeration irrigation promoted the growth of new leaves, fine roots, and new branches of grape, regulated O2/CO2 content in rhizosphere soil, and accelerated air exchange in rhizosphere soil. This study showed that aeration irrigation did not change the structure of bacteria and fungi but significantly increased the abundance of aerobic bacteria, such as Nitrospira and Cytophagia. Moreover, it promoted the increase of Pseudomonas and Aspergillus related to phosphate solubilization, that of Bacillus related to potassium solubilization, and that of Fusarium related to organic matter (OM) decomposition. This study shows that aeration irrigation through SDI with tanks can promote grape growth, which may be related to the ability of aeration irrigation to change the gas composition of rhizosphere soil, optimize the structure of rhizosphere soil microorganism.

Open access

Zhijun Zhang, Huaifeng Liu, Junli Sun, Songlin Yu, Wang He, Tianyuan Li and Zhao Baolong

The use of resistant rootstocks is an inevitable trend in the development and production of grapes (Vitis sp.). The present study analyzed differences in the metabolites in grape seeds of different rootstock combinations (1103P, 5C, SO4, 3309C, 140R, and control) grafted onto ‘Cabernet Sauvignon’ (CS) wine grape (Vitis vinifera) scions (control, CS/CS, self-rooted grafting vines) using liquid chromatography–mass spectrometry (LC-MS) and nontargeted metabolomic techniques. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal-partial least squares discriminant analysis identified 30 significant metabolites and 22 metabolic pathways in the seeds of CS that differed significantly from the control seeds. This study revealed that rootstocks influence metabolite concentrations and metabolic pathways (alanine–aspartate–glutamate pathway, arginine-proline pathway, and the tricarboxylic acid cycle) in the scion onto which they are grafted. The rootstocks increased the concentration of delphinidin-3-(6-acetylglucoside), peonidin 3-(6-p-coumarylglucoside), L-threonine, and D-tartaric in CS seeds. Appropriate rootstock combinations can be used to improve the quality of grape seeds by changing the concentrations of amino acids, organic acids, polyphenols, and vitamin B. This study provides a theoretical basis for selecting grape rootstocks and provides important insights for improving the quality of commercial products derived from grape seeds.