Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Simone C. Mello x
Clear All Modify Search

Fertilizer management is an essential step in the production process, as it allows the plant to use its productive capacity to the fullest extent possible. Researchers have tested maximum nutrient use with reduced losses to the environment aiming to increase productivity with fewer environmental impacts. This study compared the effects of controlled-release fertilizers (CRFs) with water-soluble fertilizer (WSF) and clear water (control) on the growth and nutrient uptake of croton (Codiaeum variegatum L.) and nitrogen leaching. The experiment was conducted with three replications and six treatments: two rates (1.5 g and 3.0 g per liter of substrate) of two CRFs [Osmocote Plus (15% N, 3.93% P, and 9.96% K) and Basacote (15% N, 3.49% P, and 9.96% K)], WSF, and clean water as control. All CRFs were applied before planting and WSF was supplied as nutrient solution through automated moisture sensor activated irrigation system. Plant growth (number of leaves, leaf area, stem height, root volume, and shoot and root dry weights) and total nutrient contents in the leaf tissue were evaluated every 30 days. Electrical conductivity (EC), pH, nitrate, ammonium, and total nitrogen contents were measured in the leached solution. Indeed, results showed that CRFs at a low rate provided similar development and quality of croton plants compared with WSF. Plant growth indicators were similar until 90 days after transplanting (DAT). After that, at 150 DAT, the highest values to number of leaves and leaf area occurred with WSF and with the lowest CRF rate as compared with the other treatments and control. The highest root volume was found with the WSF, which resulted in larger roots compared with the other treatments. These results showed WSF can be replaced by CRFs at low rates on croton growth. Moreover, according to the visual scale, the best treatments were WSF and Basacote at the low rate, where plants were bright, with multicolored leaves with prominent orange shades. However, CRFs maintained pH and EC within the recommended range for the growth of croton and reduced the nitrogen leaching from the pots.

Free access

The objective of this study was to compare strategies using water-soluble fertilizers (WSF) and controlled-release fertilizers (CRF) to provide adequate nutrition during both production and consumer phases of petunia (Petunia ×hybrida). Strategies included a CRF with a second prill coating (DCT) that delayed initial nutrient release, compared with a conventional single-coated CRF (OSM) and WSF. Rooted cuttings of petunia were grown for 42 days in trade 1-gal (2.84-L) containers (the “production phase”) with WSF only, a low rate of combined WSF and substrate-incorporated OSM, or low and high label rates of WSF and top-dressed (TD) OSM (WSF + OSM TD), WSF and substrate-incorporated DCT (WSF + DCT), OSM, or a commercial blend of substrate-incorporated OSM and DCT (OSM + DCT). By the end of production phase after 42 days, all fertilizer strategies tested produced horticulturally acceptable plants in terms of chlorophyll index and number of flowers. In a subsequent “consumer phase,” plants were maintained in containers or were transplanted into a landscape and irrigated with clear water for 98 days. Plant performance [number of flowers, SPAD chlorophyll index, dry weight, and tissue nitrogen (N) level] was greater during the consumer phase in treatments with high rates of CRF compared with WSF only or lower rates of CRF. On the basis of nutrient release in a sand substrate without plants at 10, 21, or 32 °C, the DCT had delayed nutrient release compared with single-coated CRF. The release rates of all CRF products and the duration of the delay in release from DCT were temperature dependent. A partial budget found that the lowest cost treatment was WSF only at $0.02/container. Comparing at high application rates, using WSF + DCT ($0.085/container) was more expensive than incorporated OSM ($0.05/container) and had a similar cost to WSF + OSM TD ($0.084/container). The greatly improved consumer performance for plants with residual fertilizer compared with WSF provides an opportunity to add value and profitability if a slightly higher sales price could be obtained. Several fertilizer strategies are available depending on material and labor cost and availability and preferred crop management style.

Full access