Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Simon D. Hucko x
Clear All Modify Search
Free access

Suping Zhou, Roger J. Sauvé, Zong Liu, Sasikiran Reddy, Sarabjit Bhatti, Simon D. Hucko, Tara Fish and Theodore W. Thannhauser

This article reports salt-induced changes in leaf and root proteomes after wild tomato (Solanum chilense) plants were treated with 200 mm NaCl. In leaf tissues, a total of 176 protein spots showed significant changes (P < 0.05), of which 104 spots were induced and 72 spots suppressed. Salt-induced proteins are associated with the following pathways: photosynthesis, carbohydrate metabolism, glyoxylate shunt, glycine cleavage system, branched-chain amino acid biosynthesis, protein folding, defense and cellular protection, signal transduction, ion transport, and antioxidant activities. Suppressed proteins belong to the following categories: oxidative phosphorylation pathway, photorespiration and protein translational machinery, oxidative stress, and ATPases. In root tissues, 106 protein spots changed significantly (P < 0.05) after the salt treatment, 63 spots were induced, and 43 suppressed by salt treatment. Salt-induced proteins are associated with the following functional pathways: regeneration of S-adenosyl methionine, protein folding, selective ion transport, antioxidants and defense mechanism, signal transduction and gene expression regulation, and branched-chain amino acid synthesis. Salt-suppressed proteins are receptor kinase proteins, peroxidases and germin-like proteins, malate dehydrogenase, and glycine dehydrogenase. In this study, different members of proteins were identified from leaf and root tissues after plants were subjected to salt treatment. These proteins represent tissue-specific changes in salt-induced proteomes. When protein expression was compared in the context of metabolic pathways, the branched-chain amino acid biosynthesis, glucose catabolism toward reducing cellular glucose level, and the antioxidant, detoxification, and selective ion uptake and transport were induced in both root and leaf tissues. These changes appear to be associated with salt tolerance in the whole plant.

Free access

Suping Zhou, Roger J. Sauvé, Zong Liu, Sasikiran Reddy, Sarabjit Bhatti, Simon D. Hucko, Yang Yong, Tara Fish and Theodore W. Thannhauser

Three tomato (Solanum lycopersicum) cultivars [Walter LA3465 (heat-tolerant), Edkawi LA 2711 (unknown heat tolerance, salt-tolerant), and LA1310 (cherry tomato)] were compared for changes in leaf proteomes after heat treatment. Seedlings with four fully expanded leaves were subjected to heat treatment of 39/25 °C at a 16:8 h light–dark cycle for 7 days. Leaves were collected at 1200 hr, 4 h after the light cycle started. For ‘Walter’ LA3465, heat-suppressed proteins were geranylgeranyl reductase, ferredoxin-NADP (+) reductase, Rubisco activase, transketolase, phosphoglycerate kinase precursor, fructose–bisphosphate aldolase, glyoxisomal malate dehydrogenase, catalase, S-adenosyl-L-homocysteine hydrolase, and methionine synthase. Two enzymes were induced, cytosolic NADP-malic enzyme and superoxide dismutase. For ‘Edkawi’ LA2711, nine enzymes were suppressed: ferredoxin-NADP (+) reductase, Rubisco activase, S-adenosylmethionine synthetase, methioine synthase, glyoxisomal malate dehydrogenase, enolase, flavonol synthase, M1 family peptidase, and dihydrolipoamide dehydrogenase. Heat-induced proteins were cyclophilin, fructose-1,6-bisphosphate aldolase, transketolase, phosphoglycolate phosphatase, ATPase, photosystem II oxygen-evolving complex 23, and NAD-dependent epimerase/dehydratase. For cherry tomato LA1310, heat-suppressed proteins were aminotransferase, S-adenosyl-L-homocysteine hydrolase, L-ascorbate peroxidase, lactoylglutathione lyase, and Rubisco activase. Heat-induced enzymes were glyoxisomal malate dehydrogenase, phosphoribulokinasee, and ATP synthase. This research resulted in the identification of proteins that were induced/repressed in all tomato cultivars evaluated (e.g., Rubisco activase, methionine synthase, adenosyl-L-homocysteine hydrolase, and others) and those differentially expressed (e.g., transketolase).