Search Results
The activity of ascorbic acid oxidase (AAO) was studied in apple (Malus domestica Borkh.) buds during dormancy and thidiazuron-induced budbreak. In dormant buds, activity of AAO was low compared with buds that were treated with thidiazuron and had resumed growth. An increase in AAO activity began at the time of metabolic transition from dormancy to budbreak. The highest level of activity was reached 10 days after thidiazuron induction during the expansion growth phase. In vitro AAO activity of apple bud extract was increased by addition of Cu (CuSO) and inhibited by Cu-chelating agents, diethyldithiocarbamate (DDC), sodium azide (NaN), and 8-hydroxyquinoiine (8-OH-Q). In vivo treatment of apple buds with Cu-chelating agents inhibited AAO activity and bud growth but not budbreak. Chemical name used: N- phenyl -N' -1,2,3-thidiazol-5-ylurea (thidiazuron).
Ethylene biosynthesis and polyamine content were determined in normal and watercore-affected apple (Malus domestics Borkh. cv. Delicious). Fruit with watercore produced more ethylene and contained higher amounts of putrescine (PUT), spermidine (SPD), 1-aminocyclopropane-1-carboxylic acid (ACC), and 1-(malonylamino) cyclo-propane-1-carboxylic acid (MACC). The activities of ACC synthase and ethylene-forming enzyme (EFE) in watercore-affected fruit were also higher than in normal fruit. The EFE activity in severely affected flesh was inhibited, resulting in ACC accumulation and low ethylene production. S-adenosylmethionine (AdoMet) was maintained at a steady-state level even when C2 H4 and polyamides were actively synthesized in normal and affected fruit.
Composition changes in galactolipids, phospholipids, and sterols in apple shoots (Malus domestica Borkh. cv. Red Delicious) from August to April were determined. The predominant fatty acids in the membrane lipids of apple shoots were palmitic acid (C16:0), linoleic acid (C18:2), and linolenic acid (C18:3). The major galactolipid components in apple shoots were monogalactosyl diglyceride (MGDG) and digalactosyl diglyceride (DGDG). The amount of MGDG and DGDG increased from autumn to spring. Galactolipids contained highly unsaturated fatty adds, mainly linoleic (18:2) and linolenic (18:3) acid. The major individual phospholipids were phosphatidylcholine (PC) and phosphatidylethaeolamine (PE). β -Sitosterol and sitosteryl ester were the predominant sterols. The phloem contained higher amounts of galactolipids, phospholipids, and sterols than did the xylem tissue. There was a significant increase in the content of galactolipids and phospholipids and onsaturation of their fatty acids during cold acclimation. A decrease in the ratio of free sterols to phospholipids also occurred in apple shoots toward cold winter months. Composition changes in galactolipids, phospholipids, and sterols that were associated with growth cessation, defoliation and cold acclimation from fall to winter, were mostly reversed following deacclimation in spring.
The changes of membrane lipids in apple (Malus domestics Borkh. cv. Delicious) auxillary and terminal buds from August to April were determined. The predominant lipids were monogalactosyl diglyceride (MGDG), digalactosyl diglyceride (DGDG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE). An increase in membrane polar lipids was associated with budbreak and bud growth from August to April. Linolenic acid was the predominant fatty acid in MGDG, DGDG, and PC, while linoleic acid was predominant in PE. Phosphatidylglycerol (PG) and phosphatidylinositol (PI) contained a high amount of palmitic acid. The ratio of (18:2 + 18:3) to 18:1 fatty acids in galactolipids in apple buds increased from August to April. ß-Sitosterol and sitosteryl ester were the predominant sterols in apple buds. An increase in sitosterol, a decrease in sitosteryl ester, and a decline in the ratio of free sterols to phospholipids occurred during budbreak in spring. A decrease in sitosterol was associated with bud expansion in spring.
The ability of low and high temperatures and S-containing compounds to overcome endo- and paradormancy along with the possible mechanisms involved in these treatments for breaking `Anna' apple bud dormancy were studied. All three treatments induced budbreak in paradormant (July) and endodormant (October) buds. Cold, heat, and allyl disulfide increased ascorbic acid, the reduced form of glutathione (GSH), total glutathione, total nonprotein thiol (NPSH), and nonglutathione thiol (RSH), whereas dehydroascorbic acid and oxidized glutathione (GSSG) decreased. The treatments also increased the ratios of ascorbic acid: dehydroascorbate and GSH: GSSG and the activities of ascorbate free-radical reductase (AFR, EC 1.6.5.4), ascorbate peroxidase (EC 1.11.1.11), dehydroascorbate reductase (DHAR, EC 1.8.5.1), ascorbate oxidase (AAO, EC 1.10.3.3), and glutathione reductase (GR, EC 1.6.4.2) in the buds. These results indicate that budbreak induced by cold, heat, and allyl disulfide is associated with the removal of free radicals through activated peroxide-scavenging systems.
Polyamine, putrescine, spermidine, and spermine contents were determined during endodormancy in the buds of low-chilling-requiring `Anna' apples (Malus domestics Borkh.). Putrescine, spermidine, and spermine contents increased greatly in buds when their chilling requirement was satisfied. Polyamine biosynthetic inhibitors α -difluoromethylarginine (DFMA) or α -difluoromethylornithine (DFMO) reduced bud break and bud growth in concert with decreased polyamine titers. DFMO or DFMA did not inhibit bud break when it was applied to buds after they received the full chilling requirement. DFMO was more inhibitory than DFMA. The polyamine requirement was much higher for bud growth and bud development than during differentiation and bud break.
The glycolipids, phospholipids, and sterols were determined in normal and watercore-affected apple (Malus domestica Borkh. cv. Delicious). Fruit with watercore contained higher amounts of glycolipids, phospholipids, and sterols. The ratios of unsaturated to saturated fatty acids and (18:3) to (18:1 + 18:2) were lower in watercore-affected tissue than in normal tissue. The ratio of free sterols to phospholipids was higher, whereas the ratio of phosphatidylcholine to phosphatidylethanolamine was lower in watercore-affected apple. Membrane lipids were altered in watercore-affected fruit.
Fruit of the cultivated strawberry (Fragaria ×ananassa Duchesne ex Rozier) are a good source of natural antioxidants, which play an important role in protecting human health. Antioxidant levels vary considerably among strawberry genotypes. The cultivated strawberry is a hybrid of two very different wild progenitor species: F. virginiana Mill. and F. chiloensis (L.) Mill. The progenitor species are valued by strawberry breeders as sources of novel traits, but have not been evaluated for antioxidant capacity or levels of antioxidant compounds. The objectives of this study are 1) to evaluate the antioxidant contents and antioxidant activities in representatives of F. virginiana and F. chiloensis in comparison with representatives of the cultivated strawberry species (F. ×ananassa), 2) to determine which strawberry compounds are most closely correlated with antioxidant capacity among these three species, and 3) to identify wild strawberry genotypes with high antioxidant activity and bioactive compounds for use in cultivar development. Fruit of 19 accessions from each of the three species, cultivated strawberry plus the two progenitor species (F. ×ananassa, F. virginiana, and F. chiloensis), were evaluated for levels of antioxidant capacity (oxygen radical absorbance capacity), total phenolics, total anthocyanins, ellagic acid, quercetin 3-glucoside plus quercetin 3-glucuronide, kaempferol 3-glucoside, kaempferol 3-rutinoside, p-coumaryl–glucose, pelargonidin 3-glucoside, pelargonidin 3-glucoside–succinate, cyanidin 3-glucoside, and cyanidin 3-glucoside–succinate. Fruit of the 13 accessions tested from the wild progenitor species F. virginiana had significantly higher antioxidant capacity, total phenolics, and total anthocyanins than did the fruit of three accessions tested from the cultivated strawberry F. ×ananassa, or the three accessions tested from the other wild progenitor species (F. chiloensis), and will be valuable as a source of parent material for developing more nutritious strawberry cultivars. The high correlation with antioxidant capacity, relative efficiency, and lack of genotype-by-year interaction in this study suggests that the measurement of total phenolics may be the better assay to use for the later selection stages in a strawberry cultivar development program. Of the evaluated F. virginiana accessions, NC 95-19-1, JP 95-1-1, CFRA 0982, NC 96-5-3, and RH 30 fruit were highest in antioxidant capacity and should prove useful toward development of strawberry cultivars with high antioxidant capacities.
The ability of low and high temperatures to overcome endo- and paradormancy along with the possible mechanisms involved in these treatments for breaking apple (Malus domestica Borkh. `Anna') bud dormancy were studied. All these treatments induced budbreak in paradormant (in July) and endodormant (in October) buds. Cold and heat treatments increased ascorbic acid, the reduced the form of glutathione (GSH), total glutathione, total non-protein thiol and non-glutathione thiol, whereas dehydroascorbic acid and oxidized glutathione (GSSG) decreased. The treatments also increased the ascorbic acid: dehydroascorbate and GSH: GSSG ratios and the activity of ascorbate-free radical reductase, ascorbate peroxidase, dehydroascorbate reductase, ascorbate oxidase, and glutathione reductase in the buds. These results indicate that budbreak induced by cold and heat treatments is associated with the removal of free radicals through activated peroxide-scavenging systems.
The effect of blackberries (Rubus sp.) genotypes on antioxidant activities against superoxide radicals (O2 –), hydrogen peroxide (H2O2), hydroxyl radicals (OH), and singlet oxygen (O,), was evaluated. The results were expressed as percent inhibition of active oxygen species production in the presence of fruit juice. The active oxygen radical absorbance capacity (ORAC) value referred to the net protection in the presence of fruit juice, and was expressed as micromoles of α-tocopherol, ascorbate, α-tocopherol, and β-carotene equivalents per 10 g of fresh weight for O2 –, H2O2, OH, and O2, respectively. Among the different cultivars, juice of Hull' blackberry had the highest oxygen species, superoxide radicals (O2 –), hydrogen peroxide (H2O2), hydroxyl radicals (OH), and singlet oxygen (O2,) scavenging capacity. Different antioxidants have their functional scavenging capacity against active oxygen species. There were interesting and marked differences among the different antioxidants in their abilities to inhibit the different active oxygen species. β-carotene had by far the highest scavenging activity against O2 – but had absolutely no effect on H2O2. Ascorbic acid was the best at inhibiting H2O2 free radical activity. For OH, there was a wide range of scavenging capacities with α-tocopherol the highest and ascorbic acid the lowest. Glutathione had higher O2 – scavenging capacity compared to the other antioxidants.