Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Shinjiro Sato x
Clear All Modify Search

Fertilizer material costs, particularly nitrogen (N), have increased substantially over the past 5 years. Increased costs, along with increased awareness of the impact of fertilizer leaching on the environment in humid regions, have increased interest in use of slow-release fertilizer (SRF) or controlled-release fertilizer (CRF) materials. The goals of SRF and CRF use are that no nutrient should be limiting for crop uptake, there should be improved nutrient uptake efficiency, and nutrient-leaching potential should be reduced. These considerations are particularly important for crops grown on sandy soils with relatively low nutrient and water holding capacities. Release rates of biodegradable, or slow-release materials, such urea formaldehyde, isobutylidene diurea, and methylene urea are proportional to soil microbial activity and are therefore soil temperature dependent. These materials are N sources and depend on soil biological activity, thus, soil temperature during specific crop growth phenology must be considered and release may be delayed by soil fumigation. Whereas CRFs depend on diffusion through coatings and not biodegradation, both are soil moisture and temperature dependent. Examples of coated materials are sulfur-coated urea, polymer-coated urea, and polymer/sulfur-coated urea. The advantage of these materials is that leachable fertilizer elements other than N can be incorporated within the coating. However, this comes at an increased cost. The use of any single or combination of these materials depends on time of year, the length of crop cycle and crop nutrient demand patterns, and the use of soil fumigants.

Full access

Florida had the largest fresh-market tomato (Solanum lycopersicum L.) production in the United States, with a value of $437 million and 13,355 ha harvested in 2014. Despite the development of Best Management Practices (BMPs) and University of Florida/Institute of Food and Agricultural Sciences (UF/IFAS) fertilizer recommendations, tomato growers often use fertilizer rates above the recommended ones, especially when seepage irrigation is used and a longer growing season is foreseen. If a mass balance of N–P–K partitioning could be made in field conditions, a better understanding of nutrition applications could be reached. Therefore, a field study was conducted on seepage-irrigated tomato on a commercial farm in southwest Florida, during the spring and winter season of 2006 to evaluate the nitrogen (N) rate and season effects on tomato plant growth, fruit yield, N, phosphorous (P), and potassium (K) accumulation and use efficiency. The UF/IFAS N-recommended rate (224 kg·ha−1) was compared with a commercial grower (CG) rate (358 kg·ha−1). Both N rates were incorporated at bedding with 61 and 553 kg·ha−1 of P and K, respectively. Fruit yield and plant growth were measured and roots, stems, leaves, and fruit samples were analyzed to determine total N, P, and K content and accumulation in different plant parts. Nutrient recovery (REC) and the partial factor of productivity of applied nutrients (PFP) were calculated for each N rate. In the spring, 120 days after transplanting, plants dry biomass was 11.5% higher (P = 0.01) in the CG N rate than with UF/IFAS N rate, while no significant differences were observed in the winter season. In the spring, N, P, and K accumulation were 250, 56, and 285 kg·ha−1 in plants grown with CG N rate and were significantly lower (23%, 5%, and 23%, respectively) with the UF/IFAS N rate, respectively. In the winter, total N accumulation was 231 kg·ha−1 in plants fertilized at CG N rate and significantly lower (16%) with the UF/IFAS N rate. N rate did not significantly affect P and K accumulation, which were on average 64 and 312 kg·ha−1, respectively. Marketable fruit yield was significantly higher (P = 0.03) with CG N rate than with UF/IFAS N rate (91.1 vs. 81.5 Mg·ha−1), and was significantly higher (P = 0.03) in the spring than in the winter (100.8 vs. 71.8 Mg·ha−1). The NREC was significantly higher (P = 0.01) with the UF/IFAS N rate than with CG N rate and was not significantly affected (P = 0.94) by seasons. The PFPN was significantly higher (P = 0.001) with the UF/IFAS N-rate than with CG N-rate, and was significantly higher (P = 0.04) in the spring than in the winter season. These results suggest that current UF/IFAS N recommendations are more conservative of N and this should lead to reduced leaching potential but, UF/IFAS recommendations must be season specific due to the difference in environmental conditions of fruit maturation in cooler weather of the winter season compared with a warmer environment of the spring season.

Free access