Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Shila Singh x
Clear All Modify Search

Abscission is a natural plant process that culminates in the removal of organs from the parent plant. Control of abscission remains an important goal of agriculture, but events that initiate and transduce abscission signals have not been well defined. An understanding of these events may reveal pathways that can be targeted to control abscission. The compound 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP) is a pyrazole-derivative that induces abscission selectively in mature citrus (Citrus sinensis) fruit when applied to the canopy. Peel contact is essential for efficacy. Previous work identified CMNP as an uncoupler. Timing of CMNP-induced events in citrus flavedo indicated that increased reactive oxygen species and electrolyte leakage occurred within 30 minutes and 2 hours after application, whereas reduced ATP content was measured 3 hours after application. Phospholipase A2 (PLA2) and lipoxygenase (LOX) activities, and lipid hydroperoxide (LPO) levels increased in flavedo of citrus fruit peel treated with CMNP, indicating that the lipid signaling pathway was activated. A specific inhibitor of PLA2 activity, aristolochic acid (AT), reduced CMNP-induced increases in PLA2 and LOX activities and LPO levels in citrus flavedo and greatly reduced abscission, suggesting that production of phospholipid-derived signals influence abscission process. However, AT treatment failed to halt the reduction in ATP content, indicating that reduction in ATP preceded the increase in PLA2 activity and the biological response. The results demonstrate a link between lipid signaling and abscission in citrus.

Free access

The effects of 2 consecutive years of annual defoliation during the harvest season on fruit size, yield, juice quality, leaf size and number were examined in trees of the midseason cultivar `Hamlin' and the late-season cultivar `Valencia' orange [Citrus sinensis (L.) Osb.]. In `Hamlin', removal of up to 50% of the leaves in late November had no effect on fruit yield, fruit number, fruit size, soluble solids yield, juice °Brix, and °Brix to acid ratio of juice the following year. In `Valencia', removal of 50% of the leaves in late March decreased fruit yield and soluble solids yield but did not affect Brix or the Brix to acid ratio of the juice. Leaf size of new flush was reduced by removal of 50% of the leaves in both cultivars but there was little effect on total canopy size. There were no measured effects of removing 25% of leaves from tree canopies. Thus, canopy growth, fruit yield, fruit quality, and leaf size were not negatively impacted when annual defoliations did not exceed 25% of the total canopy leaf area in `Valencia' and `Hamlin' orange trees for two consecutive years. Overall, fruit weight increased linearly with increasing ratio of leaf area to fruit number, suggesting that fruit enlargement can be limited by leaf area.

Free access

The effect of annual defoliation over two consecutive years on fruit yield, juice quality, leaf size, and number was examined in 11-year-old `Hamlin' and 13-year-old `Valencia' orange [Citrus sinensis (L.) Osb.] trees. Removal of up to 50% of the leaves in late November had no effect on fruit number, fruit weight, fruit yield, soluble solids yield, juice °Brix, and °Brix: acid ratio of juice in `Hamlin' oranges. In `Valencia' oranges, removal of up to 50% of the leaves in late March also did not affect °Brix or the °Brix: acid ratio of the juice, but decreased fruit yield and soluble solids yield. Leaf size was reduced by removal of 50% of the leaves in both cultivars. Removal of up to 50% leaves in late November had no significant influence on net CO2 assimilation (aCO2) of the subsequent spring flush leaves in early May in `Hamlin' oranges, whereas aCO2 of `Valencia' spring flush leaves in early May increased linearly with increasing levels of defoliation in late March. The results indicate that fruit yield, fruit quality, leaf size, and number were not negatively impacted when annual defoliations did not exceed 25% of the total canopy leaf area for `Valencia' and `Hamlin' oranges for two consecutive years. Overall, in whole `Hamlin' or `Valencia' orange trees, fruit weight increased linearly with increasing ratio of leaf area to fruit, suggesting that fruit enlargement depends on available photosynthate and can be limited by leaf area.

Free access