Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: Shi Liu x
Clear All Modify Search
Restricted access

Taifeng Zhang, Jiajun Liu, Shi Liu, Zhuo Ding, Feishi Luan and Peng Gao

Short internode length (SIL) is one of the most commercially and important traits in melon varieties (Cucumis melo L.). SIL can result in a compact vining type that promotes concentrated fruit in high-density crops, leading to greater use of light resources for photosynthesis and greater yield per unit area. In our study, two parental melon lines ‘M1-32’ (P1, standard vine) and ‘X090’ (P2, short internodes), and their F1, F2, BC1P1, and BC1P2 progenies were evaluated after being grown in plastic greenhouse conditions in 2017 and 2018. Main stem length (MSL) and internode length (IL) of six melon generations indicated that a single recessive gene (MD7) controlled dwarfism in the ‘X090’ melon line. Whole-genome analysis revealed a genomic region harboring the candidate dwarfism gene on chromosome 7. Six polymorphic cleaved amplified polymorphic sequence (CAPS) markers from chromosome 7 were used to construct a genetic linkage that spanned 30.28 cM. The melon dwarfing locus MD7 responsible for SIL was positioned between markers M7-4 and M7-5, with 3.16 cM of flanking distance. The CAPS markers M7-4 and M7-5 developed have the potential to accelerate the development of dwarf melon varieties, especially in situations when dwarf genotypes are an important breeding goal using marker-assisted selection.

Restricted access

Xiao-min Liu, Xin-zhi Zhang, Yi-min Shi and Dong-qin Tang

Genetic diversity of Narcissus was systematically studied on both morphological and molecular levels. Twenty-four characteristics of nine narcissi were observed and their differences evaluated by clustering method. The results showed that nine narcissi can be divided into two subclusters: one comprised by Narcissus pseudonarcissus, the other by Chinese Narcissus. The morphological diversity among five cultivars of N. pseudonarcissus is higher than that among four ecotypes of Chinese Narcissus (Narcissus tazetta var. chinensis). There are seven morphological characteristics in N. pseudonarcissus presenting obvious variations with coefficients from 33.33% to 91.67%. Only five morphological characteristics in Chinese Narcissus present certain variations with coefficients from 37.04% to 51.79%. On DNA level, two clusters are distantly related too. Based on the random amplified polymorphic DNA (RAPD) markers, 13 out of 40 random primers yielded scorable polymorphisms between samples. Wide variations in banding profiles between cultivars or between ecotypes were observed with nearly every primer tested. Among 95 band positions that were scored for all the 9 narcissi, 81 are polymorphic (85.26%). Cluster analysis of the calculated similarity matrix revealed that the genetic diversity between these individuals within the same section is low. However, the genetic diversity between two sections is obviously higher. Taken together, the methods combined morphological characteristics and RAPD technique allow a deep evaluation of the variation of Narcissus on both section level and cultivar/ecotype level.

Restricted access

Xiaojing Liu, Naiwei Li, Fengfeng Du, Xin Li, Yajun Chang, Ning Shi, Yuesheng Ding and Dongrui Yao

Restricted access

Ning Shi, Xiaojing Liu, Fengfeng Du, Yajun Chang, Naiwei Li, Yuesheng Ding and Dongrui Yao

Free access

De-Kun Dong, Jia-Shu Cao, Kai Shi and Le-Cheng Liu

To investigate the genetic basis of heterosis in Brassica rapa, an F2 population was produced from the cross of B. rapa L. subsp. chinensis (L.) Hanelt and B. rapa L. subsp. rapifera Metzg. Trait performances of the F1 hybrid showed evident mid parent heterosis, which varied from 18.55% to 101.62% for the 11 traits investigated. A total of 23 main effect quantitative trait loci (QTLs) were detected for biomass and its component traits, which could explain 4.38% to 47.80% of the phenotypic variance, respectively. Sixty-five percent of these QTLs showed obvious overdominance. Epistasis analysis detected 444 two-locus interactions for the 11 traits at the threshold of P < 0.005. Some of them remained significant when more stringent threshold were set. These results suggested that overdominance and epistasis might play an important role as the genetic basis of heterosis in B. rapa.

Free access

Nan Wang, Shi Liu, Peng Gao, Feishi Luan and Angela R. Davis

Citrullus lanatus (watermelon) is an excellent daily source of dietary lycopene and β-carotene. To investigate the transcriptional regulation of carotenoid biosynthesis genes relative to lycopene and β-carotene accumulation in watermelon fruit, six watermelon accessions with different flesh colors were examined in this study: white-fleshed PI 459074, pale-yellow-fleshed ‘Cream of Saskatchewan’, light-pink-fleshed PI 482255, orange-yellow-fleshed ‘WM-Clr-1’, and red-fleshed ‘LSW177’ and ‘MSW28’. The expression patterns of eight genes (PSY1, PSY2, PDS, ZDS, CRTISO, LCYB, NCED1, and NCED7) involved in lycopene and β-carotene biosynthesis and biodegradation were analyzed. The results confirmed the accumulation of large quantities of lycopene in red-fleshed ‘LSW177’ and ‘MSW28’, reflecting the elevated expression of PSY1 and the low transcriptional expression of NCED1. The relative expression levels of NCED1 likely play an important role in the color development of the light-pink-fleshed PI 482255, whereas the reduced transcriptional expression of PSY1 and the increased expression of NCED1 appear to be the main factors contributing to the formation of white flesh in the fruit of PI 459074. Low transcriptional expression of PSY1 results in the pale-yellow flesh of the ‘Cream of Saskatchewan’ fruit.

Free access

Guangxin Liu, Yue Lan, Haoyang Xin, Fengrong Hu, Zhuhua Wu, Jisen Shi and Mengli Xi

Lily (Lilium L.) species produce among the most important cut flowers worldwide. China has ≈55 species of Lilium. Although many plants from this genus have been used in hybridization efforts, their cytology has remained unclear. The goal of the current study was to characterize the chromosomes of Lilium rosthornii Diels. Root tips were used to characterize Giemsa C-banding, propidium iodide (PI) banding, and 45S rDNA locations. The karyotype of L. rosthornii belongs to type 3B. C-banding revealed polymorphic banding patterns with the following formula: 2n = 24 = CI = 4C + 14CI+ + 2I+ +2I+ 2. Two of the four 45S rDNA hybridization sites were located at pericentromeric positions on the two short arms of the homologues of chromosome 1, and the other two were located on the long arms of one chromosome 6 homolog and one chromosome 11 homolog. Six of the eight PI bands were detected in the centromeres of the homologues of chromosomes 1, 5, and 8, and the other two PI bands were detected on the long arms of one chromosome 6 and one chromosome 11. Lilium rosthornii showed enriched banding in both Giemsa C-banding and PI painting. Interestingly, not all 45S rDNA was located in homologous chromosomal locations. These results may provide reference data for L. rosthornii for use in further Lilium breeding.

Restricted access

Xiaoxu Yang, Yinshan Guo, Junchi Zhu, Zaozhu Niu, Guangli Shi, Zhendong Liu, Kun Li and Xiuwu Guo

Monoterpenoid metabolism and aroma compounds are influenced by genetic characteristics. Linalool, α-terpineol, nerol, and geraniol are primary monoterpenoids that have previously been studied in grape (Vitis vinifera) berries. Previous studies were restricted by the lack of relevant studies investigating population structure and the regulatory mechanism underlying monoterpenoid synthesis. In this study, a total of 1133 alleles were amplified, with each locus having on average 6.06 alleles. We also assessed the genetic variability among the genotypes based on 187 microsatellite primer pairs amplified in 96 grape genotypes. The results of the phylogenetic tree analysis showed that the grapevine accessions grouped into five genetic clusters that largely coincided with the recognized species classification and the result of principal coordinates analysis (PCoA). The molecular characterization of these accessions provides insight into genetic diversity, population structure, and linkage disequilibrium (LD) in grapevines. A total of 51 quantitative trait loci (QTLs) were detected that were significantly associated with linalool, α-terpineol, nerol, and geraniol. We found that Deoxyxylulose phosphate synthase (DXS) was located in the region UDV060 on linkage group (LG) 5, whereas Farnesyl diphosphate synthase (FPPS) and Hydroxymethylbutenyl diphosphate reductase (HDR) were located in the VLG19-I-1 and VLG3-A-1 regions, respectively. These novel QTLs will potentially assist in the screening of aroma compounds in grapevines.

Restricted access

Guangxin Liu, Xiaoling Zhang, Yue Lan, Haoyang Xin, Fengrong Hu, Zhuhua Wu, Jisen Shi and Mengli Xi

Karyotype comparison and fluorescence in situ hybridization (FISH) were conducted to analyze the wild Lilium species distributed in China. The karyotype results revealed that all species except Lilium lancifolium (2n = 3X = 36) were diploid and had two pairs of metacentric or submetacentric chromosomes. The karyotypes of all species are similar. FISH analysis revealed that there are 5–12 45S rRNA gene loci dispersed on the chromosomes of the 14 diploid species, and 15 45S rRNA gene loci were detected in the triploid species L. lancifolium. Most of the FISH signals were detected on the long arms and the centromeric regions. Three samples of L. brownii [Hubei, China (lat. 31°28′N, long. 110°23′E); Liaoning, China (lat. 40°07′N, long. 124°19′E); and Guangxi, China (lat. 25°06′N, long. 107°27′E)] showed very similar chromosome patterns in both the karyotype and the FISH analyses, further demonstrating that these samples belonged to the same species. L. brownii is widely distributed in China from latitude 25°06′N to 40°07′N, indicating that it is highly adaptable to the environment.

Restricted access

Ze Li, Kai Shi, Fanhang Zhang, Lin Zhang, Hongxu Long, Yanling Zeng, Zhiming Liu, Genhua Niu and Xiaofeng Tan

As a result of its high photosynthetic efficiency, the tung tree (Vernicia fordii) is a fast-growing heliophile, yielding fruit within 3 years. In addition, tung oil extracted from the fruit seeds is an environmentally friendly paint used widely in China. However, mutual shading inside a tung tree canopy leads to a low yield of fruit because of weak or dead lower branches. In this project, a pot experiment was conducted to understand the growth, physiological, anatomical structure, and biochemical responses of tung trees under various shading levels. Tung tree seedlings were subjected to different light intensities—100% sunlight (no cover), L100; 75% sunlight (25% shading), L75; 50% sunlight (50% shading), L50; and 20% sunlight (80% shading), L20—from June to August. Results indicate that the L75 treatment reduced significantly the net photosynthetic rate (Pn), stomatal conductance (g S), transpiration rate (E), total aboveground and root dry weight (DW), maximum net photosynthetic rate (A max), and maximum rate of electron transport at saturating irradiance (Jmax) compared with the control, although plant height and leaf area (LA) were not reduced. Lower light intensities (L50 and L20) and longer duration of treatment led to greater reduction in growth, leaf thickness, and photosynthetic potential (A max and Jmax). Chlorophyll a (Chl a), chlorophyll b (Chl b), and total chlorophyll content were increased in the L50 and L20 treatments compared with L100 and L75. There was no significant reduction in the enzyme activities of ribulose-1,5-bisphosphate carboxylase (Rubisco) and phosphoenolpyruvate (PEPC) of the seedlings using the L75 treatment; however, lower light intensities (L50 and L20) and longer duration of shade treatment resulted in a significant reduction in enzyme activity. In summary, the results suggest that tung trees have greater photosynthetic activity under high light intensity. Shading, even at 20%, especially for the longer term, reduced photosynthetic efficiency and growth. To prevent growth reduction, tung trees should be grown under full sun with a daily light integral (DLI) of ≈46 mol·m‒2·d‒1, and mutual shading should be avoided by proper spacing and pruning.