Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: Shi Liu x
Clear All Modify Search

Citrullus lanatus (watermelon) is an excellent daily source of dietary lycopene and β-carotene. To investigate the transcriptional regulation of carotenoid biosynthesis genes relative to lycopene and β-carotene accumulation in watermelon fruit, six watermelon accessions with different flesh colors were examined in this study: white-fleshed PI 459074, pale-yellow-fleshed ‘Cream of Saskatchewan’, light-pink-fleshed PI 482255, orange-yellow-fleshed ‘WM-Clr-1’, and red-fleshed ‘LSW177’ and ‘MSW28’. The expression patterns of eight genes (PSY1, PSY2, PDS, ZDS, CRTISO, LCYB, NCED1, and NCED7) involved in lycopene and β-carotene biosynthesis and biodegradation were analyzed. The results confirmed the accumulation of large quantities of lycopene in red-fleshed ‘LSW177’ and ‘MSW28’, reflecting the elevated expression of PSY1 and the low transcriptional expression of NCED1. The relative expression levels of NCED1 likely play an important role in the color development of the light-pink-fleshed PI 482255, whereas the reduced transcriptional expression of PSY1 and the increased expression of NCED1 appear to be the main factors contributing to the formation of white flesh in the fruit of PI 459074. Low transcriptional expression of PSY1 results in the pale-yellow flesh of the ‘Cream of Saskatchewan’ fruit.

Free access

Short internode length (SIL) is one of the most commercially and important traits in melon varieties (Cucumis melo L.). SIL can result in a compact vining type that promotes concentrated fruit in high-density crops, leading to greater use of light resources for photosynthesis and greater yield per unit area. In our study, two parental melon lines ‘M1-32’ (P1, standard vine) and ‘X090’ (P2, short internodes), and their F1, F2, BC1P1, and BC1P2 progenies were evaluated after being grown in plastic greenhouse conditions in 2017 and 2018. Main stem length (MSL) and internode length (IL) of six melon generations indicated that a single recessive gene (MD7) controlled dwarfism in the ‘X090’ melon line. Whole-genome analysis revealed a genomic region harboring the candidate dwarfism gene on chromosome 7. Six polymorphic cleaved amplified polymorphic sequence (CAPS) markers from chromosome 7 were used to construct a genetic linkage that spanned 30.28 cM. The melon dwarfing locus MD7 responsible for SIL was positioned between markers M7-4 and M7-5, with 3.16 cM of flanking distance. The CAPS markers M7-4 and M7-5 developed have the potential to accelerate the development of dwarf melon varieties, especially in situations when dwarf genotypes are an important breeding goal using marker-assisted selection.

Free access

Seashore paspalum (Paspalum vaginatum) is a notable warm-season turfgrass. Certain germplasm resources are distributed in the southern regions of China. The objectives of this study were to investigate the genetic diversity and genetic variation of Chinese seashore paspalum resources. Morphological characteristics and sequence-related amplified polymorphism (SRAP) markers were used to assess genetic relationships and genetic variation among 36 germplasm resources from China and six cultivars from the United States. The results showed significant variation for 13 morphological characteristics among 42 tested seashore paspalum accessions, and that the phenotypic cv was, in turn, turf height > turf density > internode length > inflorescence density > leaf width > reproductive branch height > spikelet width > leaf length > spikelet number > inflorescence length > internode diameter > inflorescence width > spikelet length. According to the morphological characteristics and cluster analysis, 42 seashore paspalum accessions were divided into six morphological types. In total, 374 clear bands were amplified using 30 SRAP primer combinations; among these bands, 321 were polymorphic with 85.83% polymorphism. SRAP marker cluster analysis showed that 42 seashore paspalum accessions were grouped into seven major groups, with a genetic similarity coefficient ranging from 0.4385 to 0.9893 and genetic distance values ranging from 0.0108 to 0.8244. The high level of genetic diversity occurred among Chinese germplasm, and the genetic distance was relatively high between Chinese germplasm and cultivars introduced from the United States. The patterns in morphological trait variations and genetic diversity will be useful for the further exploitation and use of Chinese seashore paspalum resources.

Free access

Lily (Lilium L.) species produce among the most important cut flowers worldwide. China has ≈55 species of Lilium. Although many plants from this genus have been used in hybridization efforts, their cytology has remained unclear. The goal of the current study was to characterize the chromosomes of Lilium rosthornii Diels. Root tips were used to characterize Giemsa C-banding, propidium iodide (PI) banding, and 45S rDNA locations. The karyotype of L. rosthornii belongs to type 3B. C-banding revealed polymorphic banding patterns with the following formula: 2n = 24 = CI = 4C + 14CI+ + 2I+ +2I+ 2. Two of the four 45S rDNA hybridization sites were located at pericentromeric positions on the two short arms of the homologues of chromosome 1, and the other two were located on the long arms of one chromosome 6 homolog and one chromosome 11 homolog. Six of the eight PI bands were detected in the centromeres of the homologues of chromosomes 1, 5, and 8, and the other two PI bands were detected on the long arms of one chromosome 6 and one chromosome 11. Lilium rosthornii showed enriched banding in both Giemsa C-banding and PI painting. Interestingly, not all 45S rDNA was located in homologous chromosomal locations. These results may provide reference data for L. rosthornii for use in further Lilium breeding.

Free access

Monoterpenoid metabolism and aroma compounds are influenced by genetic characteristics. Linalool, α-terpineol, nerol, and geraniol are primary monoterpenoids that have previously been studied in grape (Vitis vinifera) berries. Previous studies were restricted by the lack of relevant studies investigating population structure and the regulatory mechanism underlying monoterpenoid synthesis. In this study, a total of 1133 alleles were amplified, with each locus having on average 6.06 alleles. We also assessed the genetic variability among the genotypes based on 187 microsatellite primer pairs amplified in 96 grape genotypes. The results of the phylogenetic tree analysis showed that the grapevine accessions grouped into five genetic clusters that largely coincided with the recognized species classification and the result of principal coordinates analysis (PCoA). The molecular characterization of these accessions provides insight into genetic diversity, population structure, and linkage disequilibrium (LD) in grapevines. A total of 51 quantitative trait loci (QTLs) were detected that were significantly associated with linalool, α-terpineol, nerol, and geraniol. We found that Deoxyxylulose phosphate synthase (DXS) was located in the region UDV060 on linkage group (LG) 5, whereas Farnesyl diphosphate synthase (FPPS) and Hydroxymethylbutenyl diphosphate reductase (HDR) were located in the VLG19-I-1 and VLG3-A-1 regions, respectively. These novel QTLs will potentially assist in the screening of aroma compounds in grapevines.

Free access

Karyotype comparison and fluorescence in situ hybridization (FISH) were conducted to analyze the wild Lilium species distributed in China. The karyotype results revealed that all species except Lilium lancifolium (2n = 3X = 36) were diploid and had two pairs of metacentric or submetacentric chromosomes. The karyotypes of all species are similar. FISH analysis revealed that there are 5–12 45S rRNA gene loci dispersed on the chromosomes of the 14 diploid species, and 15 45S rRNA gene loci were detected in the triploid species L. lancifolium. Most of the FISH signals were detected on the long arms and the centromeric regions. Three samples of L. brownii [Hubei, China (lat. 31°28′N, long. 110°23′E); Liaoning, China (lat. 40°07′N, long. 124°19′E); and Guangxi, China (lat. 25°06′N, long. 107°27′E)] showed very similar chromosome patterns in both the karyotype and the FISH analyses, further demonstrating that these samples belonged to the same species. L. brownii is widely distributed in China from latitude 25°06′N to 40°07′N, indicating that it is highly adaptable to the environment.

Free access

To investigate the genetic basis of heterosis in Brassica rapa, an F2 population was produced from the cross of B. rapa L. subsp. chinensis (L.) Hanelt and B. rapa L. subsp. rapifera Metzg. Trait performances of the F1 hybrid showed evident mid parent heterosis, which varied from 18.55% to 101.62% for the 11 traits investigated. A total of 23 main effect quantitative trait loci (QTLs) were detected for biomass and its component traits, which could explain 4.38% to 47.80% of the phenotypic variance, respectively. Sixty-five percent of these QTLs showed obvious overdominance. Epistasis analysis detected 444 two-locus interactions for the 11 traits at the threshold of P < 0.005. Some of them remained significant when more stringent threshold were set. These results suggested that overdominance and epistasis might play an important role as the genetic basis of heterosis in B. rapa.

Free access