Search Results

You are looking at 1 - 10 of 20 items for

  • Author or Editor: Sheng Wang x
Clear All Modify Search
Authors: and

Many golf courses and turfgrass managers use recycled water, which contains high salts, as part or a sole irrigation source to lower costs and comply with governmental restrictions on water use. High salinity negatively affects turfgrass performance. Using salt-tolerant species or cultivars is one the most effective methods to address salinity problems. Twenty-six commercially available creeping bentgrass (Agrostis stolonifera) cultivars were evaluated for salt tolerance during in vitro germination on 1% agar media supplemented with NaCl at 0, 5, 10, 15, or 20 g·L−1 at 25/15 °C (day/night) under fluorescent light (36 μmol·s−1·m−2) with an 8- to16-h photoperiod. Significant variations in salinity tolerance were observed among the cultivars. Final germination rate (FGR, %) and daily germination rate (DGR, %/d) decreased linearly or quadratically as salinity levels increased. ‘Declaration’, ‘Seaside II’, ‘T-1’, and ‘Bengal’ were the most salt-tolerant, requiring salt levels at or greater than 16.0 and 10.0 g·L−1, respectively, to reduce FGR and DGR by 50%. In contrast, ‘Tyee’, ‘Kingpin’, and ‘SR1150’ required average salinity levels of 11.6 and 6.5 g·L−1 to cause 50% reduction in FGR and DGR, respectively, showing that they were the least salt-tolerant cultivars. The largest difference between FGR (1.9%) and DGR (26.2%) reduction under saline conditions was observed at 5 g·L−1, indicating that DGR was more sensitive to salinity changes than FGR. Therefore, DGR might be a more reliable method to be used for salt selection.

Free access
Authors: , , and

Salinity tolerance of five buffalograss [Buchloe dactyloides (Nutt.) Englem.] cultivars (Texoka, Cody, Bison, Sharp's Improved II, and Bowie) and three blue grama [Bouteloua gracilis (Willd. ex Kunth) Lag. ex Griffiths] ecotypes (‘Lovington’, ‘Hachita’, and ‘Bad River’) was determined during in vitro seed germination and vegetative growth in a hydroponic system. Seeds were germinated on 0.6% agar medium supplemented with NaCl at 0, 5, 10, 15, and 20 g·L−1. Salinity reduced the final germination rate (FGR) and daily germination rate (DGR). Similarly, shoot dry weight (SDW), longest root length (LRL), and percentage of green tissue (PGT) of mature grasses declined with increasing salinity levels (NaCl = 0, 2.5, 5, 7.5, and 10 g·L−1). However, root dry weight (RDW) was not significantly affected by salinity. Blue grama exhibited a lower reduction in FGR and DGR than buffalograss at salinity levels lower than 10 g·L−1. Germination of all buffalograss cultivars and ‘Hachita’ blue grama was inhibited at salinity levels of 15 and 20 g·L−1 NaCl. However, buffalograss was more salt-tolerant than blue grama at the vegetative growth stage. Variations of salinity tolerance were observed within buffalograss cultivars and blue grama ecotypes, especially during the seed germination stage. Overall, buffalograss appeared to be salt-sensitive during germination but moderately salt-tolerant at the mature stage. However, blue grama was more salt-tolerant at the germination stage than the mature stage. Noticeable differences in salinity tolerance were observed between different germplasms. Therefore, salt tolerance of buffalograss and blue grama may be improved through turfgrass breeding efforts.

Free access

Prairie junegrass (Koeleria macrantha) is a perennial, cool-season, native grass that has shown potential for use as a turfgrass species in the northern Great Plains; however, limited information is available on its salt tolerance. In this study, salinity tolerance of four junegrass populations from North America (Colorado, Minnesota, Nebraska, and North Dakota) and two improved turf-type cultivars from Europe (‘Barleria’ and ‘Barkoel’) was evaluated and compared with kentucky bluegrass (Poa pratensis), perennial ryegrass (Lolium perenne), sheep fescue (Festuca ovina), hard fescue (F. brevipila), and tall fescue (F. arundinacea). Salinity tolerance was determined based on the predicted salinity level causing 50% reduction of final germination rate (PSLF) and daily germination rate (PSLD) as well as electrolyte leakage (EL), tissue dry weight (DW), and visual quality (VQ) of mature plants. All populations of prairie junegrass showed similar salt tolerance with an average of PSLF and PSLD being 7.1 and 5.3 g·L−1 NaCl, respectively, comparable to kentucky bluegrass and hard and sheep fescue but lower than tall fescue and perennial ryegrass. Larger variations were observed in VQ in the junegrasses compared with EL and DW, in which ‘Barleria’ from the European population showed the highest VQ, following two salt-tolerant grasses, tall fescue and sheep fescue. Nebraska population was the least salt-tolerant within the species but still exhibited similar or higher tolerance than kentucky bluegrass and perennial ryegrass cv. Arctic Green. Overall, junegrass was more salt-sensitive during germination but more tolerant to salinity when mature. Salinity tolerance of junegrass may be further improved through turfgrass breeding because salinity tolerance varied in different populations.

Free access
Authors: , , and

Salinity tolerance of 12 turfgrasses in four groups, creeping bentgrass (Agrostis stolonifera L.), fescues (Festuca spp.), kentucky bluegrass (Poa pratesis L.), and alkaligrass [Puccinellia distans (Jacq.) Parl.], was evaluated using three germination methods. Seeds were germinated on 1% agar medium, on germination paper, or in a hydroponic system under salinity levels of 0, 5, 10, 15, or 20 g·L−1 NaCl. Germination rate and seedling growth of each grass were determined. Salinity reduced the final germination rate (FGR), daily germination rate (DGR), and seedling leaf area (LA) in all tests. On agar medium, no significant difference in salinity tolerance was observed among the four turf groups; however, ‘Turf Blue’ kentucky bluegrass with a corn starch-based coating (coated ‘Turf Blue’) showed a significant higher salinity tolerance than the uncoated one. Using germination paper, creeping bentgrass required the highest salinity level to cause 50% reduction in FGR followed by alkaligrass, fescues, and kentucky bluegrass. Kentucky bluegrass required the lowest salinity level (9.5 g·L−1) to reduce DGR by 50%. With the hydroponic system, alkaligrass required a salinity level of 26.3 g·L−1 to reduce FGR by 50%, the highest among the four groups. Alkaligrass showed again the highest salinity tolerance with an average of 12.7 g·L−1 needed to reduce LA by 50%. Among the grasses, coated ‘Turf Blue’ kentucky bluegrass, ‘Declaration’ creeping bentgrass, and ‘Fults’ alkaligrass showed the highest salinity tolerance when evaluated on agar medium, on germination paper, or in the hydroponic system, respectively. The present study determined the salinity tolerance of 12 turfgrasses at seed germination and early seedling growth stages and showed that the germination method was a factor affecting the evaluation result and it should be considered in a seed germination test of turfgrass for salinity tolerance.

Free access

Greenhouse experiments were conducted in 2017 and 2018 to investigate quantitative relationships between tomato yield parameters and deficit irrigation at different growth stages. Tomato plants received one of three irrigation treatments (full irrigation, 2/3, and 1/3 full irrigation) at flowering and fruit development (stage 2) and at fruit maturation (stage 3); no deficit irrigation treatments were applied at stage 1 during either season. We used linear regression to investigate how well the yield parameters such as whole-plant yield (Y), single-fruit weight (y), fruit diameter (D), and length (L) were correlated with seasonal evapotranspiration (ET) under different deficit irrigation treatments. Six water–yield models (Blank, Jensen, Singh, Stewart, Minhas, and Rao models) were used to predict the tomato yield parameters with deficit irrigation at different growth stages. The results showed that deficit irrigation at each growth stage significantly decreased ET, Y, y, L, and D, but not T1 (2/3 full irrigation at flowering and fruit development). T1 produced higher water use efficiency (WUE) with no significant decrease in yield parameters, indicating that an acceptable balance between high WUE and yield can be obtained with an appropriate water deficit at stage 2. Relative Y, y, D, and L increased linearly as relative seasonal ET increased. Water deficit sensitivity indexes calculated by the six different water–yield models showed that Y, y, D, and L were more sensitive to water deficit at stage 2 than at stage 3. The values of Y calculated by the Minhas and Singh models were similar to the observed values. The Minhas model provided good estimates of L and D, and the Blank model is recommended for calculating y when there is a water deficit at different growth stages. The water–yield models can be used to optimize irrigation water management and provide a sound basis for efficient tomato production.

Open Access

Molecular markers were used to study the genetic diversity, structure, and relationship of Juglans L. with nine populations (five from Juglans regia L. and four from Juglans sigillata Dode) in central and southwestern China. A moderate level of genetic diversity was observed at the population level with the number of effect alleles per locus (A E) ranging from 1.75 to 3.35 (average 2.39) and the proportion of polymorphic loci (P) equaling 100.0%. The expected heterozygosity (H E) within populations ranged from 0.389 to 0.687, and the average was 0.525. The proportion of genetic variation presented among populations accounted for 18.6% of the total genetic diversity. The overall gene flow (N m) among populations equaled 1.10. The unweighted pair-group method using arithmetic averages (UPGMA) clustering and the Mantel test showed that genetic distances among the nine populations are in a good agreement with their geographic distribution, supporting the viewpoint that J. regia and J. sigillata belong to one species. We suggest that the central area of the southwestern mountain regions of China could be considered as a priority for walnut genetic resource conservation.

Free access

Abstract

Oriental ginseng (Panax ginseng C.A. Meyer) to the Chinese “… is the medicine par excellence: the dernier resort when all other drugs fail; reserved for the use of the Emperor and his household, and conferred by Imperial favour upon high and useful officials whenever they have a serious breakdown that does not yield to ordinary treatment, and which threatens to put a period to their lives and usefulness” (14). Although written in 1578, these claims are still held by traditional Chinese healers. Westerners do not hold ginseng in such high esteem (9). However, the discovery of American ginseng (Panax quinquefolium L.) growing in Canada in the early 1700s lead to the establishment of trade in ginseng between North America and the Orient, which continues today (3, 4, 8).

Open Access

To investigate the quantitative response of tomato yield and fruit quality to deficit irrigation applied at different growth stages, greenhouse experiments were conducted in 2017 and 2018. Three irrigation treatments (full irrigation and two-thirds or one-third of full irrigation) were applied to greenhouse-grown tomato plants at flowering and fruit development (stage 2) and at fruit maturation stage (stage 3). Grey relational analysis (GRA), the technique for order preference by similarity to an ideal solution (TOPSIS), and principal components analysis (PCA) were used to calculate the comprehensive fruit quality indexes, and combinatorial evaluation method was determined. The results showed that deficit irrigation significantly reduced evapotranspiration (ET) and tomato yield and that relative yield had a negative linear correlation with relative seasonal water deficit (1−ETi/ETc). However, deficit irrigation improved fruit quality, especially at stage 2. Total soluble solids, the total soluble sugar concentration, the sugar-to-acid ratio, and vitamin C in the tomatoes all increased significantly in plants that were deficit irrigated compared with fully irrigated plants, while organic acids and lycopene decreased in both years. There were linear correlations between fruit quality parameters and 1−ETi/ETc. The comprehensive quality index derived from GRA and PCA is reliable, and the comprehensive quality indexes given by GRA, PCA, and a combination of GRA and PCA showed positive linear correlation with 1−ETi/ETc. The comprehensive quality ranking showed that in both years, F2/3M1 (two-thirds full irrigation at stage 2) gave a better result and CK (full irrigation) the worst. An appropriate water deficit at the flowering and fruit development stage, which results in a trade-off between acceptable yield and improved fruit quality, is recommended. Our results provide a sound basis for tomato production that has a desirable balance between high yield and high fruit quality.

Open Access

Spine grape (Vitis davidii Foex) is an important wild plant species in South China. To provide economical and environmentally safe ways to promote the precocious maturation of spine grape berries, the effects of riboflavin were investigated. Riboflavin affected the reactive oxygen species metabolism in spine grape berries by increasing superoxide radical production and the hydrogen peroxide content, and it impaired the activities of the antioxidant enzymes superoxide dismutase and catalase. Riboflavin also induced the upregulated expression of maturation-related genes in advance, and the earlier accumulation of anthocyanin and total soluble solids. Phenological observations revealed that the treated grape berries underwent a color-turning stage 9 days earlier than the control, and the maturation stage occurred 7 days earlier than the control. Thus, riboflavin may significantly promote the precocious maturation of spine grape berries.

Free access