Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Shelby J. Fleischer x
Clear All Modify Search

Sunn hemp, Crotalaria juncea L., is a warm-season legume that is planted before or after a vegetable cash crop to add nutrients and organic matter to the soil, for weed-growth prevention, and to suppress nematode populations. Sunn hemp flowers may also provide nectar and pollen for pollinators and enhance biological control by furnishing habitat for natural enemies. Despite these benefits, adoption in the United States has been limited because of restricted availability of seeds, particularly in temperate climates. Experiments were conducted in north-central Florida to compare flowering and seed production of domestic and foreign sunn hemp lines across different seeding rates and planting dates. Our objectives were to test whether a low seeding rate would result in the production of higher numbers of flowers and to test whether planting earlier in the season would also result in higher numbers of flowers. Our results over a 2 year period showed that the domestic cultivar AU Golden is capable of substantial flowering and seed production in the test region, confirming the compatibility of local environmental conditions. Seed costs suggest that ‘AU Golden’ is comparable with sunn hemp lines grown in foreign countries and is much less expensive than the standard cultivar Tropic Sun from Hawaii. The results demonstrate the potential economic viability of early flowering cultivars of sunn hemp as a cover crop alternative in Florida to improve soils in agricultural landscapes.

Free access

During the initial season of implementation, four tomato production systems differing in soil management, pest control practices, and level of inputs, such as labor, materials, and management intensity were evaluated. These systems were CON, a low input (no mulch, no trellising, overhead irrigation, preplant fertilization, scheduled pest control), conventional agrichemical system; BLD, a high input [straw mulch, trellising, trickle irrigation, compost fertility amendment, integrated pest management (IPM)], ecologically-oriented system that emphasized the building up of soil organic matter levels and used no agrichemicals to supply fertility or for pest control; BLD+, a system similar to BLD, except that agrichemical pesticides were used; and ICM, a high input system (black polyethylene mulch, trellising, trickle irrigation, fertigation, IPM pest control) that used agrichemicals to supply fertility and for pest control. Soil characteristics and fertility levels in the BLD and BLD+ systems were modified with extensive amendments of spent mushroom compost and well-rotted cattle manure. Levels of agrichemical NPK calculated to meet current crop needs were supplied to the CON and ICM systems, with 75% of fertility in the ICM system supplied through the trickle irrigation lines (fertigation). The BLD system had a greater soil water holding capacity and sharply reduced irrigation requirements. During a wet period, fruit cracking and evidence of water-mold root rot were significantly higher in the ICM system than the BLD and CON systems. Defoliation by Alternaria solani was greatest in the BLD system and least in the ICM system. The BLD and ICM systems resulted in a 1 week earlier peak yield compared to the CON system. The yield of No. 1 fruit was 55% to 60% greater in the BLD+ system than the other three systems, which were comparable in yield. Net return was highest in the BLD+ system, although the benefit/cost ratio was greatest in the CON system. This multidisciplinary study has identified important differences in the performance of diverse production systems during the unique transitional season.

Free access