Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Seong Min Woo x
Clear All Modify Search

Georgia plume (Elliottia racemosa Muhlenb. ex. Elliott) is a rare deciduous shrub or small tree. It has sustained severe loss of habitat and its range is now restricted to a limited number of sites in the state of Georgia. Tissue culture protocols have been developed as a means to propagate and conserve this threatened species using leaf explants induced on medium supplemented with 10 μm thidiazuron (TDZ) and 5 μm indole-3-acetic acid (IAA). Bud-like clusters, elongated embryo-like protrusions, and shoot-like structures were produced from the leaf explants. Morphological and histological evaluations of cultures during induction and development were conducted using light microscopy of sectioned material and scanning electron micrography. Histology of explant tissues indicates that plant regeneration of Georgia plume occurs through a shoot organogenesis pathway that involves the formation of actively dividing meristematic regions originating in subepidermal cell layers that proliferate to form protuberances on the explant surface. Numerous well-formed shoot apical meristems with leaf primordia are produced, as well as fused shoot-like structures. Elongated, embryo-like structures had various degrees of shoot apex development. Evaluations of serial sections found that they lacked a defined root apex, and that basal portions were composed of parenchymatous files of cells with a broad point of attachment to the parent tissue. The lack of bipolarity and a root pole signifies that true somatic embryogenesis does not occur.

Free access

Georgia plume, Elliottia racemosa Muhlenb. ex. Elliott, is an extremely rare small tree or shrub endemic to Georgia, which is being severely affected by habitat loss and lack of sexual recruitment. In vitro plant regeneration of Georgia plume has not been previously reported and may be a method for the conservation and propagation of this threatened species. Studies evaluated the effects of sterilization methods, explant types, medium composition, and light environment on plant regeneration. An efficient plant regeneration system was developed in which adventitious shoot buds were induced using young, expanding leaf explants placed on an induction medium supplemented with 10 μm thidiazuron and 5 μm indole-3-acetic acid with Gamborg's B5 salts. Shoot elongation was promoted on a medium with 25 μm (2-isopentenyl) adenine incorporated into Woody Plant Medium. In vitro rooting studies evaluated continuous and pulse auxin treatments and ex vitro rooting trials after KIBA (indole-3-butric acid, potassium salt) dips. A 5-day pulse treatment on 100 or 150 μm indole-3-butyric acid produced ≈90% rooting of shoots with greater shoot and root dry weight than other pulse times. High rooting frequencies were obtained under in vitro and ex vitro conditions with over 85% survival of plantlets transferred to greenhouse conditions. The culture protocol was found to be effective with material collected from mature specimens in the wild from divergent populations. Tissue culture appears to be a promising approach for the propagation and conservation of this rare and threatened plant.

Free access