Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Scott B. Lukas x
Clear All Modify Search
Restricted access

Scott B. Lukas, Joseph DeFrank and Orville C. Baldos

In Hawaii, Waltheria indica (uhaloa) has been identified for expanded usage as a roadside groundcover in lowland dry ecosystems. Seed dormancy through lack of germination of viable seeds was identified in uhaloa. The presence of physical dormancy in uhaloa seeds was determined and dormancy relief methods were evaluated including hand scarification, dry heat temperature exposure, hot water exposure, and mechanical abrasion in an electric drum scarifier. As a compliment to dormancy relief, long-term storage parameters were evaluated for scarified and nonscarified seeds. The elucidation of physical dormancy was determined through hand scarification, resulting in 96% germination compared with 8% of nonscarified seeds, but is not practical on a large-scale basis. The greatest practical dormancy relief was achieved with a mechanical electric drum scarifier lined with 80-grit sandpaper for a duration of 15 or 30 seconds producing 95% and 99% germination, respectively. Seeds immersed in boiling water for 3 and 5 seconds resulted in 58.6% and 57.7% germination, respectively. Dormancy relief through dry heat exposure was inferior to other relief methods, producing 39% germination at 75 °C for 60 minutes. Nonscarified seeds exhibited minimal loss of viability during 10 months of storage at 5 °C at 12% and 50% relative humidity (RH), but a significant decline in viability of scarified seeds was detected.

Open access

Scott B. Lukas, Joseph DeFrank, Orville C. Baldos and Ruijun Qin

Seed dormancy is an evolutionary adaptation for increasing seedling survival by delaying germination and is found in many families of seed plants. Although dormancy is ecologically important, it becomes problematic during agronomic production and restoration. Torrid panicgrass (Panicum torridum) is a native Hawaiian annual grass that has been identified as a re-vegetation candidate for seasonally dry areas. Torrid panicgrass seed appears to possess a nondeep to intermediate physiological dormancy. This research aimed to characterize dormancy relief parameters by 1) evaluating exogenous hormonal, reactive oxygen intermediates, and simulated combustion product treatments; and 2) determining optimized storage conditions of relative humidity (RH) and temperature over a 10-month duration. Results indicate that all exogenous chemical treatments tested were not effective at relieving the dormancy present in torrid panicgrass. Optimal storage conditions to relieve dormancy were found with seeds equilibrated to 12% RH, stored at 30 °C for a period of 8 months resulting in 55% germination. Maintenance of viability for long-term storage up to 10 months was best achieved with seeds stored at 12% RH at 10, 20, or 30 °C.

Full access

Scott B. Lukas, Joseph DeFrank, Orville C. Baldos and Glenn S. Sakamoto

In Hawaii, seashore dropseed (Sporobolus virginicus), a coastal native grass, has been identified as a useful species for roadside revegetation. Cuttings of seashore dropseed covered with a hydromulch cap, irrigated, and managed to control weeds have greater establishment success. In this study, the efficacy and phytotoxicity of the preemergence herbicide oxadiazon applied as a component of the hydromulch cap over seashore dropseed cut stems was evaluated. Oxadiazon in two formulations, granule and suspension concentrate (SC), was applied at two rates of 2.0 and 4.0 lb/acre, resulting in four chemical treatments. Seashore dropseed response was recorded as numerical counts of new shoots, aboveground biomass, and percent visual coverage. The highest new shoot counts of seashore dropseed, aboveground biomass, and visual canopy coverage were recorded in plots treated with the granular (G) formulation of oxadiazon applied at 2.0 lb/acre. All hydromulch cap treatments containing herbicides reduced weed pressure compared with the untreated control treatment. Granular oxadiazon at 2.0 lb/acre in the hydromulch cap provided commercially acceptable weed control while maintaining high levels of rooting and plant vigor during the establishment period.