Search Results
You are looking at 1 - 6 of 6 items for :
- Author or Editor: Satoru Motoki x
- HortScience x
Environmental conditions, specifically heat stress, are important factors in asparagus crop production. Arbuscular mycorrhizal fungi (AMF) have been shown to increase plant growth. Effects of heat stress on nutrient uptake have rarely been examined in intact plants, but the limited results indicate that heat stress will decrease uptake; no studies have examined heat stress effects on asparagus nutrient uptake. We examined the effects of AMF, Glomus intraradices, on the growth, nutrient uptake, heat stress responses, and antioxidative activity in asparagus (Asparagus officinalis L.). We grew AMF-inoculated or non–AMF-inoculated asparagus plants in sand culture at 20 to 25 °C for 14 weeks in a greenhouse and subsequently subjected to three temperature conditions (control = 20 °C/25 °C night/day, mild heating = 30 °C/35 °C night/day, and severe heating = 37 °C/42 °C night/day) in growth chambers. Morphological and physiological growth parameters were compared between AMF-inoculated and non–AMF-inoculated plants. The mycorrhizal symbiosis markedly enhanced biomass production and heat stress responses negatively in plants compared with that in the non–AMF-inoculated plants. Plants grown under non–AMF-inoculated treatment had severe rate of leaf browning (80% to 100%), whereas the mycorrhizal plants showed a minimum rate of leaf browning under heat stress conditions. The results indicated mycorrhizal-inoculated plants showed an increase activity of antioxidative enzymes, such as superoxide dismutase and ascorbate peroxidase. The 2,2-diphenyl-1picrylhydrazyl radical scavenging activity also showed a greater response in mycorrhizal plants than in the control plants under each temperature treatment. Application of AMF enhanced plant growth and mineral nutrients and alleviated heat stress damage through an increased antioxidative activity and the mycorrhizal symbiosis significantly enhanced heat stress tolerance of asparagus.
Asparagus (Asparagus officinalis L.) is a dioecious perennial plant. Male plants have a higher yield than female plants; therefore, all-male cultivars are more commonly produced. In contrast, female plants have a higher spear weight than that of male plants. To increase profitability, selective cultivation of only female plants would increase the yield of asparagus with a thick spear, which has a higher unit price. However, the effects of cultivar and cropping type on the growth and yield of male and female asparagus plants have rarely been examined. This study compared the growth and yield of female and male plants of three cultivars grown under various cropping types: a rootstock planting forcing culture; a long-term harvest production system in an open field; and a semi-forcing culture. As a measurement of growth, the rootstock weight was significantly higher for female plants compared with that of male plants with the rootstock planting forcing culture. Regarding yield measurements, the spear weight and yield were not significantly different with the rootstock planting forcing culture. However, with the long-term harvest production system in the open field and semi-forcing cultures, the weight and yield of female plants were equivalent to or significantly higher than those of male plants, regardless of the cultivar, except during some harvest periods. These results indicated that the selective production of female plants may be advantageous in terms of growing heavier spears with a higher unit price in a long-term harvest production system in the open field and semi-forcing cultures in Japan. Additionally, the development of a simple and low-cost method for sex identification would be beneficial.
Asparagus is a popular vegetable rich in healthy functional components. However, the process of its production leaves ferns from aboveground parts and roots from underground parts as unusable parts, and this is an issue to be resolved. In our previous studies, large amounts of rutin were noted in the cladophylls and storage roots (brown and epidermis), and the protodioscin content was high in buds, in the soil-covered section of spears, and in rhizomes. This study was conducted to examine the distribution of growth-inhibitory activity and mineral contents in different parts of asparagus. Correlations, including representative functional components (rutin and protodioscin), were examined. The results suggest there are differences in growth-inhibitory activity of different parts of asparagus. The growth-inhibitory activity was strong in the buds, rhizome, and absorptive and storage roots, and weak in the cladophylls and lateral branches. The percent N content of the aboveground part of asparagus was high compared with that in the aboveground part of other crops. Although the percent K content was similar to the mean of the aboveground part of other crops, it was higher than that in general green manure, suggesting the residual stems and leaves of the aboveground part of asparagus are effective green manure. In the aboveground part of asparagus, the rutin content and percent N and K content were higher, whereas growth-inhibitory activity tended to be low, suggesting that when no disease developed in the aboveground part, it can be used as an organic substance.
The antioxidation capacities of green `Welcome', green and white `Gijnlim', and purple `Purple passion' asparagus spears were evaluated. Analyses of rutin and total polyphenols, and assays of DPPH radical absorbing and low-density lipoprotein (LDL) antioxidation were conducted. Varietal differences associated with the colors of spears were observed both in the amounts of rutin, total polyphenols and in DPPH radical absorbing activities, although not in LDL antioxidation activities. DPPH radical absorbing activities seemed to be affected by both rutin and other polyphenolic compounds. However, LDL antioxidation activities were likely to be influenced more by other polyphenolic compounds than by rutin. Total polyphenol content showed a fairly close relationship with rutin content, DPPH radical absorbing activity and LDL antioxidation activity. To determinate total polyphenol content using the Folin–Denis' method seemed to be useful for selecting the breeding lines that show high antioxidative capacities.
Head tightness, soluble solid content (SSC), and rutin level were investigated in asparagus spears harvested at different lengths. We found no correlation between spear length and SSC per dry weight (DW) in spearheads. Spearheads became looser and the rutin content of the spearhead increased as spear length at harvest increased, although appearance quality decreased. These findings revealed that spears previously discarded, because their length did not meet the length specifications, contained abundant rutin. Therefore, spears for which the optimum harvesting time has been missed are a useful rutin source.
Asparagus is a popular vegetable rich in healthy functional components. Asparagus spears are known to contain a large amount of rutin, which has been found to possess anti-inflammatory, antitumor, and antibacterial/viral properties, and protodioscin, which is an antitumor substance and present in the bottom parts (8 cm from the cut end). However, the process of its production leaves fern in the aboveground parts and roots in the underground parts as significant amounts of nonusable parts, and this issue should be solved. This study was conducted to examine the distributions of rutin and protodioscin, representative functional components in different parts of asparagus. The results suggested that large amounts of rutin were noted in the cladophylls and storage roots (brown and epidermis), and the protodioscin content was high in the buds, the soil-covered section of the spear, and the rhizome. A significant amount of rutin was detected in the aboveground parts, which is consistent with the results of previous studies, but it was also found in the storage roots. The largest amount of protodioscin was found in the buds, as well as in young fruits and seeds of the aboveground parts. Injury by continuously cropping asparagus may be associated with high rutin content in the storage roots of asparagus.