Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Sanjit Deb x
  • Refine by Access: All x
Clear All Modify Search
Free access

Sanjit K. Deb, Manoj K. Shukla, and John G. Mexal

Diurnal and temporal patterns of stem water potential (ψstem) and leaf water potential (ψleaf) were determined during June to Sept. 2010 and 2011 at lower (2.5 m tree height), mid- (4.6 m), and upper (7.6 m) canopy positions for two flood-irrigated, mature pecan [Carya illinoinensis (Wangenh.) K. Koch] orchards near Las Cruces, NM. Diurnal measurements of ψstem and ψleaf at three canopy heights were correlated under both dry and wet soil conditions. However, although soil water contents at Site 2 (silty clay loam texture) remained higher compared with Site 1 (sandy loam), ψstem and ψleaf values, particularly under dry soil conditions at Site 2, were consistently lower, showing the effect of clayey soil texture on pecan water stress. Diurnal patterns of ψstem and ψleaf indicated that measurements of ψstem and ψleaf should be made close to early afternoon (between 1400 and 1500 hr Mountain Standard Time) to evaluate mature pecan water stress, which also corresponded to maximum climatic stress conditions. Midday ψstem and ψleaf measured at three canopy heights over several irrigation cycles during the 2010 season were correlated with one another, midday soil water content at different depths, and atmospheric vapor pressure deficit (VPD). Multiple regression analysis [between midday ψstem or ψleaf and midday θavg (soil water content at 0 to 40 cm), air temperature (Tmd), and relative humidity (RHmd)] during the 2010 season revealed that two-parameter regression models [ψstem or ψleaf = f (midday θavg and Tmd)] were the most significant for the interpretation of midday ψstem or ψleaf at both sites. Using the two-parameter model, predictions of ψstem and ψleaf measured on the both shaded and sunlit sides of trees at three canopy heights for 2011 showed good agreement between measured and predicted ψstem and ψleaf (R 2 ranged from 0.70 to 0.98). Two-parameter models derived in an earlier study generally underpredicted ψstem both in 2010 and 2011, which further supported the importance of the time of midday ψstem and ψleaf measurements suggested in this study.

Free access

Darby S. Kellum, Manoj K. Shukla, John Mexal, and Sanjit Deb

Greenhouse gas (GHG) emissions are fueling global climate change, with methane and nitrous oxide being the primary agricultural gases emitted. It has been shown that N2O emissions correlate to moisture content fluctuations; however, emissions from agricultural fields in the semiarid regions of the Southwest where rewetting events occur regularly are not well established. The scope of this study was to quantify GHG emissions in correlation to soil moisture fluctuations and fertilizer application. The study was conducted continuously in two pecan [Carya illinoinensis (Wangenh.) K. Koch] orchards between Aug. 2010 and Aug. 2011 on a sandy loam soil (La Mancha) and a silty clay loam soil (Leyendecker), both under normal management practices. The small chamber technique was used to measure GHGs. Emissions varied greatly throughout the year. The largest flux of CO2 at La Mancha and Leyendecker both occurred during a drying event immediately following an irrigation event: 84,642.49 μg·m−2·h−1 and 30,338.24 μg·m−2·h−1, respectively. The net CH4 flux at Leyendecker and La Mancha was close to zero with the largest emissions occurring during wetting events. Results showed that N2O emissions were maintained near the baseline except for the few days following an irrigation event. The largest emission peak at La Mancha occurred after irrigation and nitrogen application: 322.06 μg·m−2·h−1. The largest emission peaks of 26.37 and 1.13 μg·m−2·h−1 at Leyendecker and La Mancha, respectively, occurred after irrigation, nitrogen application, and tillage. Nitrogen application was the driving factor affecting N2O emissions at La Mancha, whereas soil moisture content was the driving factor at Leyendecker. Emission factors (EFs) at La Mancha and Leyendecker were 0.49% and 0.05%, respectively. A thorough accounting of GHG emissions is necessary for budgeting and identifying mitigation policy.

Free access

Sanjit K. Deb, Parmodh Sharma, Manoj K. Shukla, Theodore W. Sammis, and Jamshid Ashigh

Salinity responses and salinity-related suppression of budbreak of drip-irrigated pecan [Carya illinoinensis (Wangenh.) K. Koch] seedlings under different irrigation water salinity (ECIRR) levels were investigated in the pot-in-pot system. The 1-year-old pecan seedlings of rootstock ‘Riverside’ grafted with ‘Western Schley’ scions were transplanted in pots filled with sandy loam soil and grown for 2 years under the same amount of irrigation water but four irrigation ECIRR treatment levels consisting of 1.4 dS·m−1 (control), and three qualities of irrigation water obtained by using a solution of calcium chloride (CaCl2) and sodium chloride (NaCl) in a ratio of 2:1 (by weight) to reach the ECIRR levels of 3.5, 5.5, and 7.5 dS·m−1, respectively. The leachate electrical conductivity (ECd) was highly correlated with soil salinity (EC1:1) and was significantly higher when the irrigation ECIRR treatment levels increased from 1.4 (control) to 7.5 dS·m−1. However, both ECd and EC1:1 remained nearly constant within the same irrigation ECIRR treatment level during both years. Increasing salinity in irrigation water, particularly the ECIRR levels of 5.5 and 7.5 dS·m−1, showed significantly low seedling height and stem diameter growth and delayed or even inhibited budbreak in the seedlings. The EC1:1 that inhibited seedling heights, stem diameters, and budbreak was somewhere between 0.89 and 2.71 dS·m−1 (or ECIRR between 1.4 and 3.5 dS·m−1 and ECd between 2.10 and 4.86 dS·m−1), providing that soil water content was not a limiting factor in the root zone and irrigation water was uniformly distributed in the confined root zone to obtain uniform salt leaching. The visual symptoms of leaf scorch for irrigation ECIRR levels of 3.5, 5.5, and 7.5 dS·m−1 also indicated that somewhere between 0.89 and 2.71 dS·m−1 of the EC1:1, salt injury started to occur. Increasing salinity in irrigation water significantly increased chloride (Cl) accumulation but reduced nitrogen (N) content in the scorched leaves, particularly under the irrigation ECIRR levels of 5.5 and 7.5 dS·m−1. Leaf scorch symptoms in pecan seedlings were likely associated with Cl toxicity. No pecan seedlings under the irrigation ECIRR treatment levels of 5.5 and 7.5 dS·m−1 survived to the end of the 2-year growing period. Thus, threshold EC1:1 was somewhere between 0.89 and 2.71 dS·m−1 beyond which plant injury increases with increasing EC1:1 threatening the survival of pecan seedlings.

Open access

Ved Parkash, Sukhbir Singh, Manpreet Singh, Sanjit K. Deb, Glen L. Ritchie, and Russell W. Wallace

Water scarcity is increasing in the world, which is limiting crop production, especially in water-limited areas such as Southern High Plains of the United States. There is a need to adopt the irrigation management practices that can help to conserve water and sustain crop production in such water-limited areas. A 2-year field study was conducted during the summers of 2019 and 2020 to evaluate the effect of deficit irrigation levels and cultivars on root distribution pattern, soil water depletion, and water use efficiency (WUE) of cucumber (Cucumis sativus). The experiment was conducted in a split-plot design with four irrigation levels [100%, 80%, 60%, and 40% crop evapotranspiration (ETc)] as main plot factor and two cultivars (Poinsett 76 and Marketmore 76) as subplot factor with three replications. Results showed that root length density (RLD) was unaffected by the irrigation levels in 2019. In 2020, the RLD was comparable between 100% and 80% ETc, and it was significantly higher in 100% ETc than both 60% Eand 40% ETc. Root surface area density (RSAD) was not significantly different between 100% and 80% ETc, and it was significantly lower in both 60% and 40% ETc than 100% ETc in both years. Soil water depletion was the highest in 40% ETc followed by 60% and 80% ETc, and it was least in 100% ETc in both years. Evapotranspiration (ET) was the highest in 100% ETc followed by 80%, 60%, and 40% ETc. The WUE was not statistically different among the irrigation treatments. However, numerically, WUE was observed in the following order: 80% ETc > 100% ETc > 60% ETc > 40% ETc. The RLD, RSAD, soil water depletion, and ET were not significantly different between ‘Poinsett 76’ and ‘Marketmore 76’. However, fruit yield was significantly higher in ‘Poinsett 76’ than ‘Marketmore 76’, which resulted in higher WUE in Poinsett 76. It can be concluded that 80% ETc and Poinsett 76 cultivar can be adopted for higher crop water productivity and successful cucumber production in SHP.

Open access

Osama Mohawesh, Ammar Albalasmeh, Sanjit Deb, Sukhbir Singh, Catherine Simpson, Nour AlKafaween, and Atif Mahadeen

Colored shading nets have been increasingly studied in semi-arid crop production systems, primarily because of their ability to reduce solar radiation with the attendant reductions in air, plant, and soil temperatures. However, there is a paucity of research concerning the impact of colored shading nets on various crops grown under semi-arid environments, particularly the sweet pepper (Capsicum annum) production system. This study aimed to investigate the effects of three colored shading net treatments (i.e., white, green, and black shading nets with 50% shading intensity and control with unshaded conditions) on the growth and instantaneous water use efficiency (WUE) of sweet pepper. The results showed that all colored shading nets exhibited significantly lower daytime air temperatures and light intensity (22 to 28 °C and 9992 lx, respectively) compared with the control (32 to 37 °C and 24,973 lx, respectively). There were significant differences in sweet pepper growth performance among treatments, including plant height, shoot dry weight, leaf area, leaf chlorophyll content, and vitamin C in ripened fruit. The enhanced photosynthetic rates were observed in sweet pepper plants under the colored shading nets compared with control plants. WUE increased among the colored shading net treatments in the following order: control ≤ white < black < green. Overall, the application of green and black shading nets to sweet pepper production systems under semi-arid environments significantly enhanced plant growth responses and WUE.