Search Results

You are looking at 1 - 10 of 55 items for

  • Author or Editor: Sandra B. Wilson x
Clear All Modify Search

Japanese silver grass (Miscanthus sinensis) and 14 cultivars were transplanted in northern and southern Florida and evaluated for landscape performance, flowering, growth, and seed viability. All plants survived the 84-week study at both locations with the exception of `Morning Light', where 22% to 33% of the plants died. In northern and southern Florida, `Arabesque', `Adagio', `Cosmopolitan', and `Gracillimus' received the highest visual quality ratings on average throughout the entire study, yet other cultivars such as `Central Park' and `Silberfeder' performed well but had much narrower windows of peak performance. Cultivars such as `Little Kitten' and `Sarabande' performed far better in southern Florida than in northern Florida. Regardless of location, `Morning Light' and `Puenktchen' generally did not perform as well as other cultivars. In northern Florida, four consecutive months of very good to excellent flowering (75% to 100% canopy coverage) were observed for `Adagio', `Arabesque', `Cosmopolitan', `Gracillimus', `Little Kitten', `Sarabande', `Silberfeder', and `Zebrinus'. However, in southern Florida, peak flowering periods for these cultivars were delayed and generally only lasted for 1 to 2 months. On average, plants in northern Florida were larger and produced 2.8 times more flowers than plants in southern Florida. All cultivars produced viable seed with germination of viable seed ranging from 53.6% (`Cabaret') to 100% (`Gracillimus') in southern Florida, and from 49.8% (`Arabesque') to 100% (`Adagio', `Little Kitten', `Sarabande', and `Variegatus') in northern Florida.

Full access

The ornamental horticulture industry has long been significant in its vast economic contributions to the US agricultural sector, with Florida ranking second in nursery and greenhouse plant sales. A small proportion of introduced plants eventually escape cultivation and become invasive, leaving fragile ecosystems at risk. In response, a series of propagation and production research studies have been conducted over the years to 1) evaluate the female sterility and landscape performance of cultivars and/or hybrids of ornamental invasives, and 2) develop reliable propagation systems of novel or underused natives having ornamental and ecological value. Attractive, fruitless selections of popular species such as butterfly bush (Buddleja sp.), heavenly bamboo (Nandina domestica), Mexican petunia (Ruellia simplex), lantana (Lantana strigocamara), trailing lantana (Lantana montevidensis), privet (Ligustrum sp.), maiden silvergrass (Miscanthus sp.), and fountain grass (Pennisetum sp.) have been identified as suitable non-native alternatives to the invasive or potentially invasive resident species (wild type). Simultaneously, researchers have taken a closer look at native plant alternatives that may offer similar aesthetic traits as invasive plants, while bringing added biodiversity and function for more ecologically friendly landscapes and gardens. As such, successful multisite trialing and/or propagation systems have been developed for a number of species native to Florida, such as squareflower (Paronychia erecta), coastalplain honeycombhead (Balduina angustifolia), wireweeds (Polygonella sp.), blue porterweed (Stachytarpheta jamaicensis), wild coffees (Psychotria sp.), sweet acacia (Vachellia farnesiana), and wild lime (Zanthoxylum fagara). With pronounced marketing and consumer education, it is hopeful that together sterile cultivars and native species will ultimately replace wild-type forms of commercially available ornamental invasives. This paper summarizes the current status of ornamental invasives in Florida and the role of native species and sterile non-native cultivars.

Open Access

Plant response to photoselective plastic films with varying spectral transmission properties was tested using lisianthus (Eustoma grandiflorum) `Florida Pink', `Florida Blue', and `Florida Sky Blue'. Films were designated YXE-10 (far-red light-absorbing film) and SXE-4 (red light absorbing film). Light transmitted through YXE-10 films reduced plant height compared to control plants by 10% (`Florida Blue'), and stem dry weight by 19% to 40%, but the response varied by cultivar. Internode length was reduced by 10% to 19% when `Florida Pink' and `Florida Sky Blue' plants were grown under YXE-10 films. Leaf and root dry weights were not affected by YXE-10 films, with the exception that `Florida Sky Blue' plants had a lower leaf dry weight than the control plants. Light transmitted through SXE-4 films increased plant height of `Florida Pink' plants by 15% but not of `Florida Blue' or `Florida Sky Blue.' Regardless of cultivar, dry weight of leaf, stem and root tissue was not affected by SXE-4 films as compared to control films. The average number of days to flower and bud number were not affected by YXE-10 or SXE-4 films, regardless of cultivar. The results suggest that selective reduction of far-red wavelengths from sunlight may be an alternative technique for greenhouse production of compact plants, but the magnitude of the response is cultivar specific.

Full access

Peat is used extensively in the nursery industry as a primary component in commercial “soilless” potting media. The increased use of peat as an organic amendment with superior water-holding capacity is challenged by economic and environmental pressures. Developing inexpensive and nutrient-rich organic media alternatives can potentially reduce fertilization rates, irrigation rates, and ultimately, nursery costs. In addition, controversy over the effects of peat mining has inspired a national search for peat substitutes. With our burgeoning population, it is logical to screen waste products as potential alternatives to peat. Growth of Pachystachys lutea Nees. (Golden Shrimp Plant) transplants was evaluated in media containing 0%, 25%, 50%, 75%, or 100% compost derived from biosolids and yard trimmings. Compost was amended with a commercial peat- or coir-based media. As compost composition in the peat or coir-based media increased from 0% to 100%, carbon/nitrogen (C/N) ratios decreased, and media stability, N mobilization, pH, and electrical conductivity (EC) increased. Bulk density, particle density, air-filled porosity, container capacity, and total porosity increased as more compost was added to either peat- or coir-based media. Plants grown in media with high volumes of compost (75 or 100%) had reduced leaf area and reduced shoot and root DW than the controls (no compost). Regardless of percentage of compost composition in either peat or coir-based media, all plants were considered marketable after 8 weeks.

Free access

Similarities exist between the effects of phytochrome and cytokinins on plant growth and development (e.g., chloroplast development, amaranthin synthesis, seed germination). It is unclear, however, if and how these two systems interact. The coaction between phytochrome and cytokinins was investigated by using Nicotiana plumbaginifolia plants transformed with the isopentenyl transferase (ipt) cytokinin gene and treated with end-of-day (EOD) red (R) and far-red (FR) light. The ipt gene was under control of either a constitutive cauliflower mosaic virus promoter (35S-plants) or an inducible, heat shock promoter (HS-plants). When treated with EOD FR light, whole plants were characterized by decreased chlorophyll concentrations and increased fresh weights. When treated with EOD R light, 35S-plants contained high concentrations of zeatin riboside (ZR) compared to plants treated with EOD FR light. When treated with EOD FR light, HS-plants contained high concentrations of ZR compared to plants treated with EOD R light. Both cytokinin responses were photoreversible. The reasons for the differences between the 35S- and HS-plant responses are not known. Results appear to implicate interactions between phytochrome and cytokinins in plant growth and development.

Free access

Information is more accessible to students than ever before. Gone are the days of a single instructor being the ultimate authority on a specific scientific discipline. Search engines, online journals, virtual libraries, and the development of Internet II will continue to drive the increase in availability of information. With basic computer skills, the average college student can put their hands on more subject data than they could possibly read during the time frame of a semester-long course. Therefore, it is more critical than ever to give students the logical tools to evaluate information and construct intelligent arguments. One particular area of interest to the horticulture industry is the impact of environmental regulations and public concern over common horticultural production practices such as irrigation, land development, application of pesticides, and developmental manipulation using growth regulators. South Florida is a mosaic of pristine natural areas, major agricultural production regions, densely populated urban areas, and regions of rapid suburban growth. As a result, there is heightened public awareness of environmental issues, which often leads to spirited conflicts among people with diverse professional backgrounds and personal interests. This catalyzed the development of a new course entitled “South Florida Flora and Ecosystems” that uses several different types of critical thinking exercises to help relate course content information into the cultural and political framework of South Florida. Techniques such as role playing, utilizing guest speakers with opposite opinions on the same topic, and active evaluation of data were used to enhance student learning, increase environmental awareness, and place undergraduate horticultural students one step closer to becoming “society-ready” graduates.

Free access

University of Florida's Department of Environmental Horticulture offers undergraduate and graduate courses at seven locations throughout the state. To ensure students have access to a sufficient variety of classes, many courses are delivered by distance education. Distance education has significantly expanded student enrollment while unifying lecture content and minimizing duplication of faculty resources. However, delivering hands-on laboratory portions of courses continues to be a challenge, thus necessitating the need for web-based supplemental learning tools. An interactive, web-based tour of the 1-acre Indian River Research and Education Center (IRREC) Teaching Garden was created, allowing students at all distance education sites to learn similar plant material and landscape design principles. The virtual tour was developed by converting digital panoramic images of the landscape to movie files. The movies are navigated using a computer mouse, and plants within the tour are hyperlinked to information sheets highlighting plant characteristics. Although the website was initially developed for a Florida native landscaping course, it can be utilized in other plant identification and landscape courses, as well as by those who wish to virtually explore the garden.

Free access