Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Samuel Kwakye x
Clear All Modify Search

Candidatus Liberibacter asiaticus (CLas), which causes huanglongbing (HLB) in citrus trees, has a great impact on tree root health, fruit development, and juice quality. HLB-affected trees have a fibrous root density loss of ∼30% to 80%, resulting in the limited capacity of citrus trees to uptake nutrients. Therefore, this study was conducted for 3 years to 1) assess the temporal changes in root density as a result of varied fertilization, 2) determine dynamics of HLB with regard to root growth and distribution as a result of varied fertilization for Valencia orange trees, and 3) evaluate the impact of varied fertilization rate and method of fertilization on fruit yield for HLB-affected trees. Macronutrients and micronutrients were applied at varying fertilization rates (0×, 1×, 2×, and 4×, of University of Florida guidelines). Root scans were done using minirhizotrons at 0 to 19.1 cm, 19.1 to 40.7 cm, 38.2 to 59.8 cm, and 57.3 to 78.9 cm soil depths. Results obtained from the study showed that root growth and distribution were greater in 0 to 19.1 cm than 19.1 to 40.7 cm to 57.3 to 78.9 cm soil depths. Thus, root growth decreased (P < 0.0004) with increasing soil depth due to variation in nutrient availability for tree uptake. Increased nutrient availability at occurrence of physiological processes in citrus trees also influenced root growth and distribution, resulting in root growth flushes in the months of Nov to early Feb and Jul to early Aug. Fruit yield was significantly different between treatments in 2 of the 4 years of the study (P = 0.001 and P = 0.003), and largely ascribed to soil fertilization of micronutrients compared with foliar. Therefore, at higher fertilization rates, particularly via soil application, nutrient availability was increased, thus promoting root growth and distribution and fruit yield in HLB-affected orange trees.

Open Access

Essential nutrients for citrus [‘Bingo’ (Citrus reticulata, Blanco)] production are important for different functions, including photosynthesis, resistance to disease, and productivity. During the past 15 to 20 years, citrus production in Florida has significantly declined as a result of the devastating citrus greening disease also called huanglongbing (HLB). Therefore, a greenhouse study was conducted for 2 years, starting in 2018, at the University of Florida/Institute of Food and Agricultural Sciences Citrus Research and Education Center in Florida to evaluate the effect of varying rates of iron on the growth and development of 2-year-old HLB-affected ‘Bingo’ (Citrus reticulata, Blanco) trees on Kuharske citrange rootstock. Four treatments were used in a randomized complete block (HLB status) design with seven single tree replicates for each treatment. The treatments applied were 0.0 (control), 5.6 (standard fertilization, lx), 11.2 (2x), and 22.4 (4x) kg⋅ha−1 iron on HLB-affected and healthy (non-HLB) citrus trees. Data including trunk diameter, tree height, and leaf samples were collected, processed, and analyzed at 3-month intervals for 2 years. At the end of the second year, trees were destructively sampled and processed as above-ground and below-ground biomass. Tree heights were different among iron rates of HLB-affected trees (P < 0.001); however, they were similar for non-HLB trees for both years. Higher average trunk diameters (P < 0.001) were observed for HLB-affected trees that received the 2x rate compared with the 1x rate and the control. In 2019, non-HLB trees showed 13% to 40% higher iron concentrations in leaves than HLB-affected trees. However, leaf iron concentrations were comparable for HLB-affected and non-HLB trees in 2020. Above-ground biomass for HLB-affected trees had between 33% and 44% more biomass (P < 0.01) than below-ground biomass for the corresponding iron fertilization. Iron accumulation correlated positively with all studied nutrients in the above-ground parts for both HLB-affected and non-HLB trees. A 95% confidence interval at which total biomass was nearly maximum corresponded to an iron rate of 9.6 to 11.8 kg⋅ha−1, which was close to the 2x rate. Therefore, soil iron application using the aforementioned rates may be appropriate for better growth and development of young HLB-affected trees.

Open Access

Improving nutrient uptake and tree health play an important role in managing Huanglongbing (HLB)-affected citrus trees in Florida. A greenhouse experiment was conducted to evaluate the effect of increasing rates of manganese (Mn) on growth and development of sweet orange [Citrus sinensis (L.) Osbeck] trees at the University of Florida’s Institute of Food and Agricultural Sciences (UF/IFAS) Citrus Research and Education Center in Lake Alfred, FL. Half the trees were graft-inoculated with the HLB pathogen and the remainder were used as the HLB-free (non HLB) control trees. Four rates of Mn (0.0 kg·ha−1 Mn (Control), 5.6 kg·ha−1 Mn (1x—standard rate), 11.2 kg·ha−1 Mn (2x—standard rate), and 22.4 kg·ha−1 Mn (4x—standard rate) were split applied quarterly to both sets of the trees in a completely randomized design. There were seven single tree replicates for each treatment. Response variables measured were trunk diameter, tree height, leaf Mn concentration, plus above- and belowground biomass. The accumulated Mn in leaf tissues significantly increased trunk diameter but did not affect tree height for both HLB-affected and non-HLB trees, the 2x rate had the maximum value for trunk diameter relative to the 4x rate. This study established a positive correlation between soil available Mn with Fe and Cu, but negative correlation with B and Zn. A strong correlation of −0.76, −0.69, and 0.65 was observed between soil Mn and B, Zn, and Cu, respectively, as compared with 0.49 with Mn and Fe. Among HLB-affected trees, the 2x rate gave the most belowground dry matter, which was 3% greater than the control and 5% greater than 4x. Aboveground dry matter had at least 30% more biomass than belowground matter among all treatments within HLB-affected trees. For small and medium roots, Mn accumulation increased with Mn application until 2x rate and decreased thereafter for HLB-affected trees. The results from our study showed an Mn rate of 8.9–11.5 kg·ha−1 Mn, as the optimum Mn level for young ‘Valencia’ HLB-affected trees in Florida.

Open Access