Search Results
A capillary mat-mist system was developed to provide near constant media water contents at differing quantities of mist. Media water contents were reduced by increasing the capillary mat height above a constant water table maintained at bench level. Increased tensions from 0 to 10 cm above the water table reduced water content in Oasis, rockwool, and peat-perlite by 35.4%, 27.6%, and 17.4%, respectively. There was no difference in water content for each medium when the mist quantity ranged between 600 and 1800 mL·m-2·h-1, except when the capillary mat was at 9 cm above the water table and mist volume was 300 mL·m-2·h-1. Chrysanthemum cuttings rooted best when water content was highest regardless of media. Using the peat-perlite medium, water content had the greatest impact on rooting when the mist volume was low (600 mL·m-2·h-1). Relative water content of cuttings was lowest during the first 5 days of sticking and both reduced media water content and mist quantity resulted in the lowest internal water status for the cuttings.
Damage and degradation of cellular proteins is observed during seed deterioration due to aging. L-isoaspartyl methyltransferase (EC 2.1.1.77) is an enzyme hypothesized to play a role in limiting and repairing aging-induced damage of proteins. Tomato seeds (Lycopersicon esculentum `New Yorker') were assayed for changes in L-isoaspartyl methyltransferase activity during accelerated aging and after osmotic priming. Accelerated aging of seeds for 1 to 4 days at 45°C and 100% humidity reduced germination from 94% to 71%, the mean time of germination (MTG) increased from 2.4 to 5.8 days and was accompanied by a correlative decrease in L-isoaspartyl methyltransferase activity R 2 = 0.90. Aged and untreated seeds were primed for 7 days at 20°C in darkness using aerated solutions of 3% KNO3 or polyethylene glycol 8000 (PEG) with equivalent osmotic potential (–1.25 MPa). Priming with KNO3 decreased the MTG but not germination percentage for untreated seeds. Priming did not affect L-isoaspartyl methyltransferase activity in untreated seeds but restored activity in aged seeds primed in KNO3 to levels near that of untreated seeds. Priming with PEG did not effectively improve the MTG or increase L-isoaspartyl methyltransferase activity. During germination, enzyme activity remained constant for 48 hours post-imbibition and then declined suggesting the enzyme was developmentally regulated and inactivated or degraded as radicle emergence occurred.
High germination seed lots of purple coneflower [Echinacea purpurea (L.) Moench] were evaluated for laboratory germination following osmotic priming or chilling stratification. Compared to nontreated seeds, osmotic priming at 25C in salts (KNO3 + K3PO4; 1:1, w/w) or polyethylene glycol 4000 (PEG) increased early (3-day) germination percentage at 27C of all seed lots, and improved total (10-day) germination percentage of low-germination seed lots. Total germination percentage was unaffected or increased by priming for 4 days compared to 8 days, and by priming at –1.0 MPa compared to –0.5 MPa (except for one low-germination seed lot). Chilling stratification in water at 5 or 10C increased early and total germination of all seed lots, except for that same lot, compared to nontreated seeds. Total germination percentage was unaffected or increased by stratification at 10C rather than at 5C. Neither extending stratification ≥20 days nor lowering osmotic potential with PEG during stratification improved total germination percentage.
In vitro shoot multiplication of white Eastern redbud was successful using two-node mature explants from the initial spring flush on a woody plant medium (WPM) supplemented with benzylaminopurine (BAP). Optimal shoot proliferation was obtained at 10-15 μM BAP. Treatment with thidiazuron produced fasciated (stunted) adventitious shoots which failed to elongate. Successive subcultures increased the ability of explants to form shoots. However, shoot tip necrosis became a problem after 7-8 subcultures. Shoot tip necrosis is being studied by comparing shoot multiplication on bacto-agar vs. gelrite, increasing the Ca concentration in WPM and by trying to reduce the phenolic exudate by the explants with PVP or activated charcoal. Microshoots >3 cm long were rooted by pulse treatment on half strength WPM containing 300 μM IBA or NAA before being moved to hormone free WPM. There was a different morphology between IBA and NAA induced roots, although the number of roots were comparable. IBA treated microcuttings developed branched, fine roots, whereas NAA treated plants produced unbranched, coarse roots. Rooted microshoots were successfully acclimated to greenhouse condition.
Rooting stage, transpiration capacity, and relative water content were measured in cuttings every 5 days for 25 days. Cell divisions in phloem parenchyma were evident between 5 and 10 days after sticking, organized subcuticular root primordia were present between 10 and 12 days, and roots emerged between 12 and 15 days. Transpiration was measured in poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch `Freedom Dark Red') cuttings under light or dark conditions at increasing vapor pressure deficit (VPDair) levels during different stages of rooting. Transpiration capacity did not increase until roots emerged on the cuttings. Light had a significant impact on transpiration rates only after roots emerged. Light was more significant than VPDair for determining actual transpiration. Between visible rooting (15 days) and 25 days, increase in total root length was linear (r 2 = 0.92) and significantly correlated with transpiration (r 2 = 0.98). Transpiration capacity increased after visible rooting, but did not significantly increase under non-misted conditions until cuttings were well-rooted and had a total root length >50 cm (18 days after sticking). Relative water content measured before and after entering the transpiration chamber confirmed that cuttings were only able to take enough water from the medium to continue sustained transpiration after 18 days. A cutting coefficient was developed from transpiration data to modify the misting interval for dynamic controlled misting. Greenhouse studies showed a 55% or greater reduction in water use with dynamic control compared to constant static or stepped down static control. Rooting performance was unaffected by misting interval. Foliar nutrition was significantly reduced in all cuttings after 7 days in the mist bench, but changes in foliar elemental content were not correlated with misting interval.
Root zone temperature optima for root initiation and root elongation stages for rooting in poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch `Freedom Dark Red') cuttings was determined to be 28 and 26 °C, respectively. Threshold temperatures where rooting development was slow (>24 days) or did not occur were ≤20 and ≥32 °C. Time to visible rooting and postemergent root elongation was modeled based on cumulative daily mean root zone temperatures in growth chamber studies using a thermogradient table to provide simultaneous temperatures between 19 to 34 °C. Time to root emergence at different root zone temperatures was best described using a nonlinear growth rate derived mathematical model, while postemergent root elongation up to 100 cm could be described using either a linear thermal time model or a nonlinear equation based on elongation rate. These temperature-based mathematical models were used to predict rooting in six greenhouse experiments. Using a root zone base temperature of 21 °C, observed vs. predicted time to visible root emergence was highly correlated (r 2 = 0.98) with a mean prediction error (MPE) of 1.6 d. Observed vs. predicted root length using the linear thermal time model had a r 2 = 0.69 and an MPE of 14.6 cm, which was comparable to the nonlinear model with an r 2 = 0.82 and an MPE of 14.8 cm.
Satin flower (Clarkia amoena ssp. whitneyi - syn. Godetia) is a cool season native to the Western U.S. being studied for its potential use as a cutflower crop in Kentucky. In May 1989, plants of `Grace Salmon' were transplanted to the field into black fabric mulch. A factorial experiment was conducted with three pinching treatment (no pinch, pinched early at the third mode prior to transplanting, and pinched in the field at the third mode after the first flower bud was visible) and at three spacings (15, 30 end 45 cm). There were significant main and interaction effects for both pinching and spacing for the number of flowering stems, stem length and plant diameter. However, no treatment combination consistently produced flowering stems of sufficient length for commercial quality. This may be due to the later spring planting date and hot weather in 1989. In an attempt to increase flower stem length, Godetia `Grace Salmon' plants have bean transplanted on April 10, 25 and May 10, Plants will be pinched in the greenhouse or grown without pinching et 45 or 15 cm spacing, respectively, The. effect of supplemental lighting and long days during transplant production will also be considered,