Search Results

You are looking at 1 - 10 of 16 items for

  • Author or Editor: S.M. Scheiber x
Clear All Modify Search
Free access

S.M. Scheiber and Richard C. Beeson Jr.

Petunia ×hybrida Vilm. `Midnight' plants were grown in drainage lysimeters to evaluate growth in response to alternative irrigation strategies. Irrigation treatments were tensiometer-regulated automatic irrigation systems, regularly scheduled irrigation using an automated controller, and human perception of plant irrigation need (manual watering). Mean irrigation volumes were reduced by manual watering and tensiometer-regulated treatments, compared to the automated controller. Total mean irrigation volume applied by the automated controller (460 L) was significantly greater than received by the manually watered (293 L) or tensiometer-regulated (286 L) treatments. Regularly scheduled irrigation using an automated controller resulted in higher assimilation rates, final shoot dry mass, final biomass, shoot to root ratios, and growth indices compared to other irrigation methods tested. Assimilation rates were significantly higher for tensiometer-controlled irrigation than the manually watered treatment, but no differences were reported between these two treatments for growth parameters. Visual observations indicated aesthetic quality was compromised among tensiometer-regulated and manually watered treatments relative to the automated controller treatment.

Full access

S.M. Scheiber and Richard C. Beeson, Jr

Previous research indicated that bedding plants can be maintained in landscape soils allowed to dry to substantially less than field capacity before irrigation; however, canopy size and aesthetic quality were compromised. Continuing this research, ‘Yalaha’ coleus (Solenostemon scutellarioides) were grown in drainage lysimeters in an open-sided clear polyethylene-covered shelter and a companion uncovered field plot to assess growth characteristics and landscape quality when irrigated at various managed allowable deficits. Using tensiometers, plants were irrigated back to field capacity when plant-available water within a soil was depleted to 70% or 50%. Deficits were evaluated against a control treatment of 0.5 inch daily irrigation. Total irrigation volume applied was significantly greater for the control treatments than deficit irrigation treatments. The net result was 78% and 90% average reductions in total volume applied to lysimeter and field-grown coleus respectively. On average, height was 20% and 15% greater for well-watered controls grown in lysimeters and field plots respectively than plants grown in deficit irrigations. Canopy size of nondeficit controls was 26% and 72% greater on average than deficit treatments in lysimeter and field plots respectively. However, shoot and root dry weights, total biomass, shoot-to-root ratios, and landscape quality were similar among treatments for both locations.

Full access

S.M. Scheiber, David Sandrock, Erin Alvarez and Meghan M. Brennan

Salt-tolerant landscape plants are important to ornamental growers, landscapers, and residents in coastal communities. Ornamental grasses are frequently recommended for low-maintenance landscape situations and may be candidates for coastal plantings after they are evaluated for their salt spray tolerance. ‘Gracillimus’ maiden grass (Miscanthus sinensis) and ‘Hamelin’ fountain grass (Pennisetum alopecuroides) were subjected to four treatments [100% seawater salt spray, 50% seawater salt spray, 25% seawater salt spray, or 0% seawater salt spray (100% deionized water)] applied as a foliar spray. As seawater concentration increased, root, shoot, whole-plant biomass gain, height, inflorescence number, and visual quality decreased for both cultivars; however, fountain grass appears to be slightly more tolerant of salt spray than maiden grass.

Free access

S.M. Scheiber, Carol D. Robacker and M.A. Dirr

Flowering evergreen shrubs that are compact and resistant to pests are in great demand in the nursery and landscape industries. The genus Abelia contains 30 species that vary in many traits including flower color, growth habit, and hardiness. Abelia × grandiflora (Andre) Rehd. and its cultivars are the most widely grown Abelia taxa and are characterized by pest resistance, an abundance of pinkish white flowers, long flowering period, and glossy evergreen foliage. Interspecific hybridization among Abelia × grandiflora, its cultivars, and other species in the genus Abelia offer the potential for new cultivars; however, seed germination within the genus has been described as slow and inconsistent. Experiments were conducted to test procedures to increase germination percentages and rates. Each Abelia seed is enclosed in a leathery achene. The effect of achene removal was examined in combination with cold, moist stratification for 60 days at 4 °C, immersion in 100 ppm gibberellic acid for 24 h, and no treatment. Treatments were replicated five times with 15 seeds per replication. Seeds were sown on sphagnum peat, and grown under mist in the greenhouse. Weekly germination counts were recorded for 8 weeks. Seeds with attached achenes germinated at a significantly higher percentage than those without achenes. Cold, moist stratification and gibberellic acid treatments were not significantly different than the control. No significant differences were found within the achene treatments for relative rate of emergence, but significant differences were found for the time until 90% of final emergence was reached.

Free access

S.M. Scheiber, C.D. Robacker and M.A. Dirr

The genus Abelia contains ≈30 species, but A. × grandiflora, its cultivars, and A. `Edward Goucher' are the primary taxa grown. The nursery industry has stated that Abelia R. Br. taxa are important economically, and new selections or cultivars with increased cold hardiness, richer pink-rose flower colors, unique foliage colors, and compact habits are desired. Breeding and selection work in the genus is very limited due in part to limited access to germplasm. Pollen storage enables breeders to cross taxa with incongruent flowering cycles, save time and resources by eliminating the need to grow vast amounts of plant material, and incorporate otherwise unavailable germplasm into a breeding program. An experiment was conducted to determine the optimum levels of temperature and humidity for the long-term storage of A. chinensis and A. × grandiflora `Golden Glow' pollen. Temperature and humidity levels were analyzed by incubating undesiccated pollen of a given taxon at four humidity levels (0%, 50%, 80%, and 100%) for 72 h at 5 °C. Following incubation, the pollen was stored in glass vials at each of the following temperatures: 5, -20, and -70 °C. All combinations of temperature and humidity were tested. Pollen viability was assessed after 60 days by in vivo germination tests on styles. Abelia chinensis pollen germinated following storage at all temperature and humidity levels. Pollen of A. × grandiflora `Golden Glow' pollen germinated following all treatments except storage at -20 °C.

Free access

Sudeep Vyapari*, S.M. Scheiber and Richard C. Beeson Jr.

During Fall 2003, a study was conducted to determine the effect of soil amendments on growth and response of Pentas lanceolata `New Look Red' in the landscape. Pentas were grown in 250L drainage lysimeters in an open-sided clear polyethylene covered shelter filled with local top soil (Apopka fine sand). The treatments used were non-amended top soil (control) and soil amended with either compost (5% by volume) or clay (5% by volume) in the top 15 cm. Best Management Practices were followed. Irrigation frequency and rate were regulated using a tensiometer-controlled automatic irrigation system. When plant available water in each soil type had declined to 70% or less, the plants were irrigated back to field capacity. Data were recorded on initial and final growth indices, shoot dry weight, and root dry weight. Final growth indices between control and soil amended with compost were not different; however, growth in the clay-based soil was significantly less than the compost-based soil type. The mean shoot dry weight (77.2 g) produced from plants in compost amended soil type was significantly higher than either control (57.45 g) or clay amended (54.92 g) soil types. No significant differences were found for either initial growth indices or root dry weight among the three treatments.

Free access

S.M. Scheiber, Richard C. Beeson Jr and Sudeep Vyapari

Pentas lanceolata Schum. ‘New Look Red’ plants were grown in compost-amended, mined field clay-amended, or unamended sand soils in drainage lysimeters to evaluate growth, aesthetic quality, and irrigation requirements. Treatments were evaluated with irrigation controlled by tensiometers set to irrigate back to near field capacity when plant-available water in each soil declined to 50%. Compost-amended soils had greater (P < 0.05) mean shoot dry weight, total biomass, shoot-to-root ratios, growth indices, and landscape quality than other amendment treatments. Unamended soils and clay-amended treatments were comparable for all plant parameters. Total irrigation volumes applied were similar among treatments. Compost-amended soils yielded larger canopies, improved quality, and tended toward less cumulative irrigation. Clay amendment was not beneficial.

Full access

Sudeep Vyapari, S.M. Scheiber and E.L. Thralls

Three root ball conditions—nonroot-bound (NRB), root-bound (RB), and root-bound sliced (RBS)—were evaluated for their effect on plant growth of plumbago (Plumbago auriculata) during establishment and postestablishment in the landscape. At transplant, NRB plants were smaller than other treatments. Canopy size, shoot dry weight, root dry weight, and total biomass growth rates were faster for NRB plants compared with RB or RBS. By 6 and 8 weeks after transplanting, respectively, biomass and canopy size were similar among treatments. Rootbound and RBS plants were similar indicating root ball slicing does not affect growth in the landscape.

Free access

S.M. Scheiber, R. Jarret and C.D. Robacker

Deciduous azaleas have been gaining popularity because of their showy floral displays and adaptability to adverse environmental conditions. However, an absence of distinguishing morphological characteristics, combined with the wide variability present in most species, has created difficulties in efforts to unambiguously identify the different species. Various DNA isolation protocols were tested in order to determine the most effective methods for isolation of DNA from 22 taxa of Rhododendron for subsequent PCR amplification. DNA yields from the various isolation methods varied widely. A minimum of 50 ng/μL of template DNA was necessary for PCR amplification under standard amplification conditions. Results indicated that the effect of tissue age on the efficiency of DNA isolation was taxa-dependent. For most species, extraction of DNA from freshly harvested young leaf tissue resulted in the highest DNA yields. However, DNA yields from R. serrulatum, R. atlanticum, and R. viscosum `Lemon Drop' were highest when mature leaf tissue was used. Primers designed to amplify the internal transcribed spacer (ITS) region of the nuclear ribosomal genes and the psbD, trnK, and 16S chloroplast genes were tested in various PCR reaction mixes in order to optimize reaction conditions for amplification. Primers to both the ITS and the psbD gene resulted in satisfactory amplification in the presence of 1.5 mM MgCl2 and 50 ng template DNA.

Full access

S.M. Scheiber, E.F. Gilman, D.R. Sandrock, M. Paz, C. Wiese and Meghan M. Brennan

Although new and innovative measures to reduce landscape water consumption are being sought, traditional methods of water restrictions and plant selection prevail. Species native to North America are often promoted as drought tolerant with little information to support or refute such claims. Furthermore, species performance is unknown in maintained environments such as commercial and residential landscapes. Thus, 10 native and 10 exotic species, commonly used in landscapes, were evaluated independently for postestablishment growth and aesthetics under irrigated and nonirrigated landscape conditions. Growth indices were recorded monthly, with dieback and plant density evaluated at termination of the experiment. At termination of the experiment, canopy size of eight native [beautyberry (Callicarpa americana), fringe tree (Chionanthus virginicus), yaupon holly (Ilex vomitoria ‘Nana’), virginia sweetspire (Itea virginica), wax myrtle (Myrica cerifera), chickasaw plum (Prunus angustifolia), saw palmetto (Serenoa repens), and coontie (Zamia floridana)] and eight exotic [golden dewdrop (Duranta erecta), cape jasmine (Gardenia augusta), crape myrtle (Lagerstroemia indica), oleander (Nerium oleander), japanese pittosporum (Pittosporum tobira), indian hawthorn (Rhaphiolepis indica), sweet viburnum (Viburnum odoratissimum), and sandankwa viburnum (V. suspensum)] species were similar for irrigated and nonirrigated treatments. Irrigation resulted in larger canopy sizes for two native [walter's viburnum (V. obovatum) and inkberry (I. glabra)] and two nonnative [japanese privet (Ligustrum japonicum) and fringe flower (Loropetalum chinensis)] species. Among the native species with larger canopy sizes under irrigated conditions, all are indigenous to swamps and streams. With the exception of virginia sweetspire, plant density and dieback were similar for irrigated and nonirrigated plants of all taxa examined. Irrigated virginia sweetspire plants had higher plant density and dieback ratings than nonirrigated plants. Results indicate that, aesthetically, irrigated and nonirrigated plants were similar. Data emphasize the importance of selecting plant material adapted to existing environmental landscape conditions.