Search Results

You are looking at 1 - 10 of 15 items for

  • Author or Editor: S.A. Sargent x
  • Refine by Access: All x
Clear All Modify Search
Free access

F. Maul and S.A. Sargent

The effects of prolonged ethylene exposure on external and internal quality parameters of tomato fruits were studied in order to explore the feasibility of its use as a nondestructive technique for screening immature and inferior quality fruit. `Agriset' and `CPT-5' tomatoes were hand harvested at Stage 1 (green) and held at 20°C and 50 ppm ethylene for 1-7 days. Each 24 hours, fruits reaching Stage 2 (breaker) were removed from C2H4 and transferred to 20°C air for subsequent ripening. Tomatoes were considered at edible maturity upon reaching full red-ripe stage and 4 mm deformation and final quality parameters were determined. For both cultivars, fruits which required prolonged C2H4 exposure to reach Stage 2 had lower overall visual appearance. `Agriset' tomatoes which required short exposure times to C2H4 (1 to 3 days) had somewhat higher quality than those requiring prolonged times (4 or 5 days). Days to reach edible maturity were 9.5 and 7.7, respectively. For the short exposure times, peel color was more intense (higher chroma value), while soluble solids content and total sugars were significantly higher (P = 0.05). Quality of `CPT-5' tomatoes was not adversely affected until requiring 6 or 7 days exposure to C2H4. Days to reach edible maturity decreased from an average of 12.5 to 11.0 for 1 to 5 or for 6 to 7 days exposure, respectively. For fruits requiring 7 days exposure, soluble solids content, total sugars and pH were significantly higher than for those reaching Stage 2 in fewer days. There were no significant differences in titratable acidity or ascorbic acid content for either cultivar.

Free access

S.M. Smith, J.W. Scott, J.A. Bartz, and S.A. Sargent

Fresh market tomatoes (Solanum lycopersicum L.) handled through dump tanks and flumes at packinghouses can absorb water via stem scar tissues. This water uptake can lead to internalization of various hazardous bacteria, including Erwinia carotovora (Jones), the causal agent of bacterial soft rot. Studies were conducted to determine if the interval between harvest and water immersion affected water uptake for ‘Florida 47’ and ‘Sebring’, cultivars with high and low water uptake, respectively. Fruit were held for 2, 8, 14, and 26 hours after harvest for the fall season and 2, 4, 6, 8, and 14 hours for the following spring season before water immersion. Mature green fruit were weighed, submerged in water for 2 min and then reweighed to determine water uptake. During the submergence, air pressure was applied such that the fruit were exposed to a static water-head equivalent to 1.3 m. In the fall season ‘Sebring’ fruit absorbed significantly less water than ‘Florida 47’ fruit at 8 and 26 hours after harvest. In the spring season fruit of ‘Sebring’ absorbed significantly less water than ‘Florida 47’ at all times after harvest, confirming results of previous studies. In the fall season, the time interval between harvest and treatment did not affect water uptake for either cultivar. By contrast, in the spring season fruit absorbed significantly greater amounts of water at 2 hours as compared with 4, 6, 8, and 14 hours after harvest, whereas similar amounts of water were absorbed at 4–14 hours after harvest. Therefore, to minimize the tendency of fruit to absorb water, packinghouse managers should hold freshly harvested fruit for at least 4 hours before immersing them in the dump tank.

Free access

A.N Kaaya, J.K. Brecht, S.J. Locascio, S.A. Sargent, and M. Alligood

Green `Jupiter' bell peppers (Capsicum annuum L.) were grown in the spring and fall seasons of 1994 on polyethylene mulch with drip irrigation. Seedlings were planted on three dates in each season, either 2 weeks (spring) or 1 week (fall) apart, with N applied at rates of 0, 100, 200, or 400 kg·ha–1. Primary fruit were harvested upon reaching full size (diameter) and the bioyield-point (which reflects bruising susceptibility) measured at the fruit shoulder with an Instron machine; pericarp thickness was measured adjacent to the area where bioyield-point was measured. Dry weight of the fruit tissue was measured in the fall only. Bioyield force decreased with increasing N rate and increased with later planting time in the fall, but did not change with N rate and decreased only slightly with planting time in the spring. Pericarp thickness increased with N rate in both spring and fall, but increased with planting time in the spring while decreasing in the fall. Dry matter increased with planting time, but decreased with N rate in the fall peppers. These results indicate that bioyield force is not controlled by pericarp thickness, but rather may be more closely related to cell size or cell wall thickness, as suggested by dry weight differences.

Free access

S.M. Smith, J.W. Scott, J.A. Bartz, and S.A. Sargent

Harvested tomato (Solanum lycopersicum L.) fruit can absorb water via stem scar tissues. Decay incidence {bacterial soft rot (Erwinia carotovora Jones), sour rot (Geotrichum candidum Link), bacterial sour rot [Leuconostoc mesenteroides (Tsenkovskii) van Tieghem ssp. mesenteroides], and certain species of Lactobacillus Beijerinck} has been positively linked with the degree of water absorption. Previous studies have shown that cultivars differ in their tendencies to take up water during a simulation of packinghouse handling procedures. The inheritance of water absorption tendency was examined in two seasons of tests where six inbred tomato lines were intercrossed to develop a complete diallel. Following harvest at the mature-green stage, fruit were weighed, submerged in water for 2 min, and then reweighed to determine water absorption. Parental lines were tested in three seasons. Two parental lines, Fla. 7776 and Fla. 7946, were always in the low-absorption grouping, and NC84173 also had relatively low absorption. Fla. 8059 and Fla. 7777 were always in the high-absorption group, and Fla. 8000 tended to have high absorption. General combining ability for the low water absorption fruit characteristic was significant for both seasons with a higher level of significance in the spring over the fall season (P ≤ 0.001 and P ≤ 0.05, respectively), while specific combining ability was not significant for either season. Thus, the low water absorption fruit characteristic appears to be additively inherited. Accurate knowledge of parental absorption should allow prediction of hybrid performance. None of the hybrids absorbed unexpected amounts of water over both seasons. Reciprocal effects were significant (P ≤ 0.05) for fall, and maternal effects were significant (P ≤ 0.05) in spring. However, there was no general trend in water absorption due to the direction of the cross and thus no clear evidence for cytoplasmic inheritance. Water absorption was much greater in spring than in fall. Based on previous observations, the greater absorption in spring was due to higher field temperatures. Because of such environmental effects, parent lines should be replicated and tested over several seasons to accurately assess their relative water absorption. Crosses between consistently low water absorption parents should provide low-absorption hybrids, but testing of hybrids before release is suggested to verify this.

Free access

Alvaro O. Pacheco, G.J. Hochmuth, D.N. Maynard, A.A. Csizinszky, and S.A. Sargent

Optimum economic yield is produced when nutrients in the proper amounts are supplied to the crop. Crop nutrient requirements (CNR) of essential elements have been determined for the major vegetables produced in Florida. However, for minor crops, such as muskmelon, little research has been conducted to determine the CNR, especially potassium. In many vegetables, yield has responded to increasing K rates when other elements were not limiting. Our objective was to determine the K fertility requirement for optimum yield of muskmelon and to evaluate the Mehlich-1 soil test calibration for soil testing low in K (<20 mg·kg–1). Experiments were conducted in the spring and fall seasons of 1995. Potassium at five rates (0, 56, 112, 168, and 224 kg·ha–1) was injected weekly, approximating the growth curve of `Galia' and `Mission'. There were significant yield responses to K fertilization for both cultivars during both seasons. During spring, average marketable yield was 14.5, 26.1, 31.9, 31.5, and 36.3 Mg·ha–1 and for fall, average marketable yield was 15.8, 32.9, 37.8, 37.2, and 36.4 Mg·ha–1 for the previously described K treatments, respectively. The cultivar response for both seasons was described by a linear-plateau model. In spring, yield was maximized with K at 116.8 and 76.3 kg·ha–1 for `Galia' and `Mission', respectively. In fall, K at 73.3 and 68.3 kg·ha–1 produced the peak response for the same cultivars. These results indicate that maximum yield of muskmelon in Florida can be obtained at considerably less K than the current recommendation of 140 kg·ha–1.

Free access

M.C.N. Nunes, A.M.M.B. Morais, J.K. Brecht, and S.A. Sargent

`Chandler' strawberries (Fragaria ×ananassa Duch.) harvested three-quarter colored or fully red were stored in air or a controlled atmosphere (CA) of 5% O2 + 15% CO2 at 4 or 10 °C to evaluate the influence of fruit maturity and storage temperature on the response to CA. Quality evaluations were made after 1 and 2 weeks in air or CA, and also after 1 and 2 weeks in air or CA plus 1 day in air at 20 °C. By 2 weeks, strawberries of both maturities stored in air at 10 °C were decayed, however, strawberries stored in CA at 4 or 10 °C or air at 4 °C had no decay even after 2 weeks plus 1 day at 20 °C. Three-quarter colored fruit stored in either air or CA remained firmer, lighter (higher L* value) and purer red (higher hue and chroma values) than fully red fruit, with the most pronounced effect being on CA-stored fruit at 4 °C. CA was more effective than air storage in maintaining initial anthocyanin and soluble solids contents (SSC) of three-quarter colored fruit and fruit stored at 10 °C. Strawberries harvested three-quarter colored maintained initial hue and chroma values for 2 weeks in CA at 4 °C, becoming fully red only when transferred to air at 20 °C. Although three-quarter colored fruit darkened and softened in 10 °C storage, the CA-stored fruit remained lighter colored and as firm as the at-harvest values of fully red fruit. After 1 or 2 weeks in CA at either 4 or 10 °C plus 1 day at 20 °C, three-quarter colored fruit also had similar SSC levels but lower total anthocyanin contents than the initial levels in fully red fruit. CA maintained better strawberry quality than air storage even at an above optimum storage temperature of 10 °C, but CA was more effective at the lower temperature of 4 °C. Three-quarter colored fruit responded better to CA than fully red fruit, maintaining better appearance, firmness, and color over 2 weeks storage, while achieving similar acidity and SSC with minimal decay development.

Free access

R.J. Bender, J.K. Brecht, D.J. Huber, and S.A. Sargent

Tree-ripe `Tommy Atkins' mangoes were not injured during storage in controlled atmospheres (CA) for 21 days at 8°C, and the fruit resumed ripening after transfer to air at 20°C (Bender et al., 1995). In our study, tree-ripe `Keitt' mangoes were stored at 5 and 8°C in either 10% or 25% CO2 combined with 5% O2 with control fruit maintained in air. Control fruit had higher percentages of electrolyte leakage than CO2-treated fruit at transfer from the CA and after 3 days in air at 20°C. Fruit stored in 25% CO2 at 5°C had significantly higher concentrations of 1-aminocyclopropane-1-carboxylic acid (ACC), over 0.5 nmol ACC/g fresh weight in mesocarp tissue. All the other treatments had similar ACC levels (<0.3 nmol/g fresh weight) after 21 days in CA. Ethylene production rates at both temperatures were significantly lower in the 10% CO2 treatment than in control fruit and were not detectable in 25% CO2. Ethylene production was similar in all treatments after transfer to air. Fruit from the 25% CO2 treatment at 5°C developed dull, green-grayish spots on the epidermis, but otherwise epidermal color, as determined by chroma and hue angles, did not differ among the treatments. There also were no differences in flesh color and flesh firmness.

Free access

R.J. Bender, J.K. Brecht, S.A. Sargent, and D.J. Huber

Exposure to hypoxic O2 levels has been reported to result in better epidermal color, higher titratable acidity and soluble solids levels, delayed softening and reduced ethylene production and respiratory activity in many fruit species. Mangoes have been shown to tolerate short term (4 days) exposures to O2 concentrations below 0.5% with beneficial effects on firmness retention and maintenance of ground color. In the present work, `Haden' mangoes were stored for 14 days at 15°C with O2 levels ranging from 2% to 5% and compared to an air control and an atmosphere of 25% CO2 in air. `Tommy Atkins' mangoes were stored under the same treatments at 12°C for 21 days. After storage at 12 or 15°C the mangoes were transferred to air at 20°C for 5 days. Ethanol production rates during controlled atmosphere (CA) storage were significantly higher at O2 levels of 4% and below. Respiration (CO2 production) rates were reduced during CA storage but did not differ from the control after transfer to air. There were no differences in ethylene production as well as in flesh firmness, titratable acidity and total sugars. The ground color of mangoes kept under the lowest O2 concentration and under 25% CO2 was greener, as indicated by higher hue angles, than in the other treatments upon transfer to air at 20°C. However, only the mangoes stored under high CO2 maintained higher hue angles during the subsequent 5 days at 20°C.

Free access

M.D. Ferreira, S.A. Sargent, J.K. Brecht, and C.K. Chandler

Individual strawberry (Fragaria ×ananassa Duch.) fruits at cooled or ambient pulp temperatures were subjected to compression or impact forces to determine sensitivity to bruising. Fruits were more resistant to compression bruising at lower temperatures, but were more resistant to impact bruising at ambient temperatures. `Chandler' fruits at 1C or 30C were compressed (9.8 N for 2 s); after 24 h @ 24C, bruise volumes were 0.27 cm3 and 0.65 cm3, respectively. Following a single impact from 13 cm, fruits at 1C or 24C had bruise volumes of 0.21 cm3, and 0.10 cm3, respectively. Increasing impact height to 38 cm caused bruise volumes of 0.31 cm3 and 0.16 cm3 for fruits at 1C and 24C, respectively. The potential exists to improve packout quality and efficiency for value-added strawberry packs. Due to greater resistance to impacts at ambient temperatures, strawberries could be bulk-transported to a central facility, and graded and packed on an appropriately designed packing line. Care must be taken to avoid compression bruising at harvest.

Free access

M.D. Ferreira, J.K. Brecht, S.A. Sargent, and C.K. Chandler

`Sweet Charlie' strawberries (Fragaria ×ananassa Duch.) harvested at full ripe stage were 7/8-cooled by forced-air or hydrocooling to 4C, then held with or without a PVC film wrap in one of three storage regimes: 1) 7 days at 1C plus 1 day at 20C; 2) 7 days at 1C plus 7 days at 7C plus 1 day at 20C, or; 3) 7 days at 1C plus 5 days at 15C plus 2 days at 7C plus 1 day at 20C. Quality attributes, including surface color, firmness, weight loss, soluble solids and ascorbic acid content, pH, and titratable acidity, were evaluated after storage. Hydrocooled berries were better in overall quality, with better color retention, less weight loss, and lower incidence and severity of decay compared to forced-air-cooled berries. Strawberries wrapped in PVC film retained better color and had less weight loss and greater firmness, but greater incidence and severity of decay than berries stored uncovered. These results indicate good potential for using hydrocooling as a cooling method for strawberries.