Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: S.A. Fennimore x
  • Refine by Access: All x
Clear All Modify Search
Free access

Mark S. Johnson and Steven A. Fennimore

The phase out of methyl bromide has forced strawberry (Fragaria ×ananassa Duchesne) growers to consider the use of cultural methods such as colored mulches to enhance weed control. Black plastic mulch controls most weeds; however, black mulch often does not warm the soil as well as clear mulch. Soil warming with clear mulch is desirable for early season markets, but clear mulch does not control weeds. Neither black nor clear mulches combine the ideal weed control and soil warming characteristics required. Seven colored mulches, as well as clear, black and no mulch were evaluated in California organic and conventional strawberries to identify mulch factors associated with weed control and soil warming. Laboratory and greenhouse experiments were also conducted to isolate the effects of light transmittance through mulch on weed germination and growth. The effect of mulch color on transmittance of photosynthetically active light (400 to 700 nm) through mulches was the key weed control factor, and was more important than the effect of mulch color effect on weed germination. Satisfactory weed control was provided by all mulches except clear, blue and red-brown laminated. Clear and black mulches provided the greatest soil warming in sunny and cloudy climatic conditions, respectively, although plants in clear mulched conventional production system plots produced the highest yield of marketable berries. Green and brown plastic mulches provided the best combinations of soil warming and weed control benefits at all trial locations.

Free access

S.A. Fennimore, M.J. Haar, and H.A. Ajwa

The loss of methyl bromide (MB) as a soil fumigant has created the need for new weed management systems for crops such as strawberry (Fragaria ×ananassa Duchesne). Potential alternative chemicals to replace methyl bromide fumigation include 1,3-D, chloropicrin (CP), and metam sodium. Application of emulsified formulations of these fumigants through the drip irrigation system is being tested as an alternative to the standard shank injection method of fumigant application in strawberry production. The goal of this research was to evaluate the weed control efficacy of alternative fumigants applied through the drip irrigation system and by shank injection. The fumigant 1,3-D in a mixture with CP was drip-applied as InLine (60% 1,3-D plus 32% CP) at 236 and 393 L·ha-1 or shank injected as Telone C35 (62% 1,3-D plus 35% CP) at 374 L·ha-1. Chloropicrin (CP EC, 95%) was drip-applied singly at 130 and 200 L·ha-1 or shank injected (CP, 99%) at 317 kg·ha-1. Vapam HL (metam sodium 42%) was drip-applied singly at 420 and 700 L·ha-1. InLine was drip-applied at 236 and 393 L·ha-1, and then 6 d later followed by (fb) drip-applied Vapam HL at 420 and 700 L·ha-1, respectively. CP EC was drip-applied simultaneously with Vapam HL at 130 plus 420 L·ha-1 and as a sequential application at 200 fb 420 L·ha-1, respectively. Results were compared to the commercial standard, MB : CP mixture (67:33) shank-applied at 425 kg·ha-1 and the untreated control. Chloropicrin EC at 200 L·ha-1 and InLine at 236 to 393 L·ha-1 each applied singly controlled weeds as well as MB : CP at 425 kg·ha-1. Application of these fumigants through the drip irrigation systems provided equal or better weed control than equivalent rates applied by shank injection. InLine and CP EC efficacy on little mallow (Malva parviflora L.) or prostrate knotweed (Polygonum aviculare L.) seed buried at the center of the bed did not differ from MB : CP. However, the percentage of weed seed survival at the edge of the bed was often higher in the drip-applied treatments than in the shank-applied treatments, possibly due to the close proximity of the shank-injected fumigant to the edge of the bed. Vapam HL was generally less effective than MB : CP on the native weed population or on weed seed. The use of Vapam HL in combination with InLine or CP EC did not provide additional weed control benefit. Chemical names used: 1,3-dichloropropene (1,3-D); sodium N-methyldithiocarbamate (metam sodium); methyl bromide; trichloro-nitromethane (chloropicrin).

Full access

M.J. Haar, S.A. Fennimore, M.E. McGiffen, W.T. Lanini, and C.E. Bell

In an effort to identify new herbicides for vegetables crops, broccoli (Brassica oleracea) cantaloupe (Cucumis melo), carrot (Daucus carota), head lettuce (Lactuca sativa), bulb onion (Allium cepa), spinach (Spinacia oleracea) and processing tomato (Lycopersicon esculentum) were evaluated in the field for tolerance to eight herbicides. The following herbicides and rates, expressed in a.i. lb/acre, were applied preemergence: carfentrazone, 0.05, 0.1, 0.15 and 0.2; flufenacet, 0.525; flumioxazin, 0.063, 0.125 and 0.25; halosulfuron, 0.032 and 0.047; isoxaben, 0.25 and 0.50; rimsulfuron, 0.016 and 0.031; SAN 582, 0.94 and 1.20 and sulfentrazone, 0.15 and 0.25 (1.000 lb/acre = 1.1208 kg·ha-1). Tolerance was evaluated by measuring crop stand, injury and biomass. Several leads for new vegetable herbicides were identified. Lettuce demonstrated tolerance to carfentrazone at 0.05 and 0.10 lb/acre. Cantaloupe and processing tomato were tolerant of halosulfuron at 0.032 and 0.047 lb/acre. Broccoli, cantaloupe and processing tomato were tolerant of SAN 582 at 0.94 lb/acre. Broccoli and carrot were tolerant of sulfentrazone at 0.15 lb/acre.

Full access

Christine M. Rainbolt, Jayesh B. Samtani, Steven A. Fennimore, Celeste A. Gilbert, Krishna V. Subbarao, James S. Gerik, Anil Shrestha, and Bradley D. Hanson

Methyl bromide (MB) has been widely used in California cut-flower production for effective control of a broad range of soil pests, including plant pathogens and weeds. However, MB is an ozone-depleting substance, and its availability to growers is limited according to the Montreal Protocol guidelines. Steam has been suggested as a nonchemical option for preplant soil disinfestation. Five trials were conducted in protected greenhouse structure or open-field cut-flower nurseries in Monterey, San Luis Obispo, and Ventura counties to evaluate the effect of steam application, alone or in combination with solarization, on soilborne plant pathogen populations, weed densities, and crop growth. Several steam application methods were used including steam blanket, spike-hose, buried drip irrigation lines, or drain tile, and these varied among trials. Calla lily (Zantedeschia aethiopica) nursery trials initiated in 2007 and 2008 showed that steam alone or with solarization was similar to or more effective than MB:chloropicrin (MBPic), applied via drip lines, in controlling weeds and Verticillium dahliae at 6-inch depth. Trials conducted in Spring and Fall 2009 in an oriental hybrid lily (Lilium sp.) nursery showed that, 112 days after steam treatment (DAT) in the spring, the steam (spike-hose) treatment had fewer Fusarium oxysporum propagules than the MB treatment. Lily plant growth in the steam-treated plots was similar to MB-treated plots and taller than in control plots. In the fall trial, fewer lily plants emerged by 44 DAT in the untreated control than in steam- and MB-treated plots and steam was not as effective as MB in reducing Pythium populations. In the 2010 sunflower (Helianthus annuus) and bupleurum (Bupleurum griffithii) trial, all steam treatments reduced Pythium and Phytophthora cactorum survival compared with the untreated control plots, whereas weed densities were reduced only in the spike-hose steam-treated plots. These trial studies showed that steam appeared as effective as MB in suppressing pathogens and weeds and improving crop growth in cut-flower nurseries. However, additional information on fuel consumption, treatment time efficiency, and long-term effects of steam treatment on soil health are needed before steam can be recommended as a viable alternative to MB in California cut-flower nurseries.