Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: S. Wee x
Clear All Modify Search
Authors: and

Autoxidation products alpha-farnesene of have been implicated in superficial scald induction for apple (Malus domestica cv. Cortland Apple) fruit. We suspect the apple cuticle acts as a sink where α-farnesene can accumulate and eventually autoxidize into hydroperoxides, conjugated trienes, 6-methyl-5-hepten-2-one (ketone), and other compounds. These oxidized byproducts may diffuse back into the peel, thereby initiating the scald process. Cortland apples were stored at 0.8°C. Volatile cuticular components were analyzed at 2-week intervals by gas chromatography–mass spectroscopy. Only two scald-related volatiles were found, 6-methyl-5-hepten-2-one and α-farnesene. The identification of these compounds may allow the determination of cuticular involvement in superficial scald, as well as a possible correlation between the volatiles and apple scald development. α-farnesene concentrations initially increased and was followed by a decline, possibly due to its autoxidation.

Free access
Authors: and

Volatile compounds produced by apple (Malus domestica Borkh) fruit partition into the cuticle and epicuticular waxes and may play an important role in superficial apple scald. Of these volatiles, α-farnesene, conjugated trienes, hydroperoxides, and 6-methyl-5-hepten-2-one have been identified as playing a crucial role in scald production. Volatiles from the epicuticular wax of four different apple cultivars have been analyzed by gas chromatography/mass spectroscopy. A correlation was found between scald incidence and 6-methyl-5-hepten-2-one content and the 6-methyl-5-hepten-2-one:α-farnesene ratio. α-Farnesene is the most-abundant volatile at the beginning of storage, whereas 6-methyl-5-hepten-2-one is present in minute quantities. These two volatile compounds appear to have an inverse relationship with respect to one another since the levels of 6-methyl-5-hepten-2-one increased and α-farnesene decreased prior to the onset of apple scald. This changing ratio may have been due to an autoxidative process resulting in the breakdown of α-farnesene to 6-methyl-5-hepten-2-one. Analysis of the volatiles emanating from the apple wax revealed a number of compounds associated with aroma that also partition readily into the fruit surface.

Free access