Search Results

You are looking at 1 - 10 of 17 items for

  • Author or Editor: S. Roy x
Clear All Modify Search

One hundred twenty-eight field samples of 25 potato stem sections were analyzed for detecting bacterial ring rot (BRR). Samples containing more than 105, between 105 and 104, and <104 immunofluorescing BRR cells per milliliter of sample, detected using immunofluorescence-antibody staining with MAb9A1, were used to compare the efficiency of two other detection methods. Samples were screened with a digoxigenin-labeled DNA probe (Bh1 2, 0.6 kbp) detected by chemioluminescence on nylon membrane. Samples also were screened with a PCR test using primers derived from the sequence of the Bh12 probe. DNA probe tests on these three bacterial concentrations showed a detection efficiency of 100%, 76.8%, and 8.0%, respectively, whereas detection efficiencies of 100%, 100%, and 84.5% were obtained with PCR tests. Almost all positive samples gave the expected 403 bases ethidium-bromide-stained band when the amplified products were analyzed on 1.4% agarose gel. Thus, the PCR test was a sensitive detection method for screening bacterial ring rot of potato.

Free access

Flowering of brodiaea (Triteleia laxa syn. Brodiaea laxa `Queen Fabiola') did not have an obligate requirement for manipulation of temperature or photoperiod. Vernalization of corms reduced the greenhouse forcing phase but did not alter the number of flowers per inflorescence or scape length. Long photoperiods hastened flowering but decreased flower quality and flowering percentage. Scape length, which was not affected by photoperiod or mother corm size, was increased when plants were grown at night temperatures < 10C. Diameter of the apical meristem in the dormant corm, flowering percentage, and flower quality were not affected by a 10-fold increase in corm size above a critical weight (0.6 g). In contrast, the weight and number of daughter corms were closely correlated with mother corm size. The optimum planting depth for brodiaea corms was 10 cm below the soil surface.

Free access

Exposure of dormant corms of Triteleia laxa `Queen Fabiola' to 20 ppm C2H4 for 7 days promoted flowering of small corms and resulted in increased apical meristem size, early sprouting, early flowering, more flowers per Inflorescence, and increased fresh weight of daughter corms and cormels. The respiration rate of the C&treated corms increased to four to five times that of the controls during the 7-day treatment, declined markedly after termination of the C2H4 treatment, but remained higher than that of the controls. The C2H4 effects were associated with increased growth rate and consequently a greater final size of the apical meristem (determined by scanning electron microscopy). Leaves produced by C2H4-treated corms were wider, longer, and weighed more than those of the controls.

Free access

Abstract

Nucellar and zygotic offspring of ‘Satsuma’ mandarin (Citrus reticulata Blanco) were differentiated by gas chromatographic analysis of gaseous emanations from fragmented leaves of 6-month-old seedlings. Analysis was rapid (< 3 minutes/sample), could be performed on individual leaves, and required virtually no tissue processing. Thus, the method is amenable to the screening of large progeny at the young seedling stage.

Open Access

Increased soil moisture and temperature along with increased soil microbial and root activity during summer months elevate soil CO2 levels. Although previous research has demonstrated negative effects of high soil CO2 on growth of some plants, little is known concerning the impact high CO2 levels on creeping bentgrass (Agrostis palustris Huds.). The objective of this study was to investigate effects of varying levels of CO2 on the growth of creeping bentgrass. Growth cells were constructed to U.S. Golf Association (USGA) greens specification and creeping bentgrass was grown in the greenhouse. Three different levels of CO2 (2.5%, 5.0%, and 10.0%) were injected (for 1 minute every 2 hours) into the growth cells at a rate of 550 cm3·min-1. An untreated check, which did not have a gas mixture injected, maintained a CO2 concentration <1%. Gas injection occurred for 20 days to represent a run. Two runs were performed during the summer of 1999 on different growth cells. Visual turf quality ratings, encompassing turf color, health, density, and uniformity, were evaluated every 4 days on a 1-9 scale, with 9 = best turf and <7 being unacceptable. Soil cores were taken at the end of each run. Roots were separated from soil to measure root depth and mass. Turf quality was reduced to unacceptable levels with 10% CO2, but was unaffected at lower levels over the 20-day treatment period. Soil CO2 ≥2.5% reduced root mass and depth by 40% and 10%, respectively.

Free access

Calcium is an important constituent of the cell wall and plays roles in maintaining firmness of fruit and reducing postharvest decay. The modification of the cell wall is believed to be influenced by calcium that interacts with acidic pectic polymers to form cross-bridges. Infiltrating apples with CaCl2 has been suggested as an effective postharvest treatment for increasing the calcium content. Three different methodologies were used to analyze the effects of calcium on the cell walls: 1) nickel staining of polygalacturonate on free-hand sections, 2) cationic gold labeling of anionic binding sites in the cell walls, and 3) analytical detection of calcium ions (40Ca, 44Ca) using a secondary ion mass spectrometry. The combination of these methods allowed us to directly visualize the cellular features associated with the infiltration of calcium. Treatment resulted in significant enrichment in the cell wall of the pericarp, transformed the acidic pectins in calcium pectates, and resulted in new calcium cross-bridges. Evidence now suggests that exogenously applied calcium affects the cell wall by enhancing its strength and reinforcing adhesion between neighbor cells; therefore, calcium infiltration delays fruit degradation.

Free access

Decay caused by Botrytis cinerea is significantly reduced by increasing the calcium concentration of apple fruit tissue. Electron microscope studies have revealed that cracks in the epicuticular wax may be an important pathway by which calcium penetrates into the fruit and increases the calcium concentration. In fruit inoculated with B. cinerea, the decay induced compositional changes in the cell walls of high-calcium fruit were smaller than those observed in the low calcium treatment. The effect of calcium in reducing decay is associated with maintaining cell wall structure by delaying chemical changes in cell wall composition. B. cinerea produced five polygalacturonase isozymes in vitro but only one in vivo. Among the cations studied-m was the most potent inhibitor of polygalacturonase activity in in vitro studies. Its mode of inhibition appears to involve the alteration of substrate availability for hydrolysis, rather than any direct effect on the active sites of the enzyme.

Free access

Increasing the calcium content of apples with postharvest CaCl2, treatment has a beneficial effect on physiological and pathological storage problems. The optimal time after harvest during which the fruit can be successfully treated has not been investisated. This study examined the relationship between calcium uptake and the changes in surface cracking in the epicuticular wax of the fruit after various storage intervals. Apples were pressure infiltrated with 0, 2, or 4% CaCl, solutions at harvest or four or six months after storage at 0 C. Examination of the epicuticular wax with low temperature scanning electron microscopy revealed that as the storage duration increased, the numerous cracks on the fruit surface became deeper and wider, until, after six months storage, the cracking extended through the thickness of the cuticle. Calcium uptake in fruit pressure infiltrated with the CaCl2 solutions after six months storage was greater than fruit treated at previous storage intervals. As storage duration increased, epicuticular wax cracks became deeper and calcium uptake increased.

Free access

Frozen hydrated buds and epicarp of `Golden Delicious' apple (Malus domestica Borkh.) were observed with a low-temperature, field emission scanning electron microscope (SEM). In addition to observing surface features of these specimens, holders were modified to observe fractured specimens. A modified hinged holder retained both halves of a fractured specimen for examination of the complementary faces of frozen hydrated tissues. Low-temperature SEM avoided artifacts, such as extraction, solubilization, and shrinkage, which are normally encountered with chemical fixation, dehydration, and drying, respectively. The technique allowed observations of well-preserved frozen hydrated structures, such as the platelets of epicuticular wax; loosely associated organisms on plant surfaces, such as spider-mite eggs; delicate structures, such as fungal hyphae; and partially hydrated tissues, such as fruit epicarp and winter bud scales.

Free access