Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: S. Miyasaka x
Clear All Modify Search

Cupric sulfate pentahydrate (CuSO4·5H2O) has been proposed for use in Hawaii as a molluscicide to control golden apple snail (Pomacea canaliculata Lamarck) infestations of taro [Colocasia esculenta (L.) Schott]. Two hydroponic, greenhouse studies were conducted to determine the effects of solution Cu2+ levels on taro growth, the solution Cu2+ toxicity threshold, and useful diagnostic indicators of Cu toxicity. In the first experiment, taro cultivars Lehua maoli and Pololu were grown at nine levels of Cu2+ ranging from 0.5 to 25.0 μm. In the second experiment, `Lehua maoli' was grown at six levels of Cu2+ ranging from 0.25 to 2.5 μm. Significant (P ≤ 0.05) toxic effects included reduced dry matter production, leaf area, and root length: root dry weight ratio, and both impaired photosynthesis and a generalized reduction of cation accumulation in leaf blade tissue. The solution Cu2+ toxicity threshold (based on 90% of relative total dry weight) for young taro plants was 1.2 μm. Because Cu does not accumulate in leaf blade tissues with increasing solution Cu2+ levels, leaf Cu concentration cannot be used as a diagnostic indicator of Cu toxicity in taro.

Free access

To determine the potential to suppress root-knot nematode Meloidogyne javanica, 10 genotypes of seven green manure species were evaluated in a greenhouse study. These species were: black hollyhock (Alcea rosea L.); canola (Brassica napus L.); cabbage (B. oleracea L.); French marigold (Tagetes patula L.), sorghum–sudangrass [Sorghum bicolor (L.) Moench nothosubsp. drummondii (Steud.) de Wet ex Davidse]; sunn hemp (Crotalaria juncea L.); and yellow mustard (Sinapis alba L.). Plants were inoculated with eggs of M. javanica and after 6 weeks, nematode eggs and reproduction factor (Rf = final egg population density/initial egg population density) were determined. Marigolds were non-hosts to M. javanica; other crop species that were poor hosts to M. javanica included canola cv. Dwarf Essex, sorghum–sudangrass cvs. Piper and Sordan 79, black hollyhock cv. Nigra, and sunn hemp. Based on low Rf, four groups of species were selected for further evaluation in the greenhouse to determine the response to both M. javanica and another crop pathogen, Pythium aphanidermatum. These four groups of green manure crops were: 1) seven marigold genotypes; 2) four Brassicaceae genotypes; 3) seven sorghum–sudangrass hybrids; and 4) four other species [black hollyhock, sunn hemp, elecampane (Inula helenium L.), and black-eyed Susan (Rudbeckia hirta L.)]. Plants were inoculated with a factorial combination of M. javanica and P. aphanidermatum (none, each alone, and in combination) and repeated four times in a split-plot experimental design (whole plots were factorial treatments and subplots were green manure crop genotypes). Six weeks after inoculation, plants were harvested and measured for fresh and dry weights of shoots and roots and Rf of M. javanica. Adverse effects of P. aphanidermatum were characterized by dead or dying roots and measured by reduced plant biomass. Negative synergistic effects were observed in several marigold and Brassicaceae genotypes, in which the combined effects of M. javanica and P. aphanidermatum reduced shoot and root growth more severely than either treatment alone. Marigold T. erecta cv. Orangeade, sorghum–sudangrass cvs. Graze-All, Piper, and Sordan 79, and sunn hemp appeared to be resistant to M. javanica and P. aphanidermatum, either alone or in combination. Based on results of greenhouse trials, eight green manure crops (yellow mustard cv. Ida Gold, French marigolds cvs. Nema-gone and Golden Guardian, sorghum–sudangrass cvs. Sordan 79 and Tastemaker, sunn hemp, unplanted plot, and a control plot with weed mat) were selected and grown for 3 months in a field trial in Pepeekeo, HI. Each treatment was replicated four times in a randomized complete block design. Shoot biomass was sampled at 1, 2, and 3 months after planting. Plant–parasitic nematodes were counted before planting and at 4 months after planting. Dry weight biomass averaged across three sampling dates was greatest for the two sorghum–sudangrass hybrids followed by those of two marigold cultivars that did not differ from them. No significant differences in populations of root-knot nematodes were found. Based on this field trial as well as greenhouse trials, marigold cultivars, sorghum–sudangrass hybrids, and sunn hemp appeared to be non-hosts or poor hosts to reniform (Rotylenchulus reniformis) as well as root-knot nematodes and well adapted to the environmental conditions found along the Hamakua Coast of the Hawaii Island.

Free access

Nitrogen (N) is often the most limiting mineral nutrient for taro growth. Two experiments were carried out under hydroponics conditions to determine the effects of varying solution N levels and N form on taro (Colocasia esculenta L. Schott cv. Bun Long) growth and foliar nutrient concentrations for 42 days. In the first experiment, taro plants were grown at six NH4NO3 levels (0, 0.25, 0.5, 1.0, 2.0, and 4.0 mm N). In the second experiment, taro plants were grown at a total N level of 3 mm with five nitrate (NO3-): ammonium (NH4+) percent molar ratios (100:0, 75:25, 50:50, 25:75, and 0:100). In the N level experiment, dry matter and leaf area increased up to 2 mm N and then decreased at the highest N level. The reduced growth of taro at the highest N level was attributed in part to a high NH4+ level that reduced uptake or translocation of cations, such as Ca2+, Mg2+, and Mn2+. Nitrogen concentration in leaf blades increased with increasing N levels. The critical foliar N concentration that coincided with 95% of maximum growth based on a quadratic model was 40.4 g·kg-1 (dry weight basis). In the N form experiment, NO3-: NH4+ ratios of 75:25 or 100:0 favored greater plant growth compared to other treatments. Taro plants grown in NH4+-rich solutions drastically acidified the solution pH, and had retarded growth and smaller leaf area compared to those grown in NO3--rich solutions.

Free access