Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Ryan M. Goss x
Clear All Modify Search
Full access

Walter F. Ray, Geno A. Picchioni, Dawn M. VanLeeuwen and Ryan M. Goss

Tall fescue (Festuca arundinacea) has desirable attributes as a cool-season turfgrass for the semiarid southwestern United States and the transition zone, but effects of cultural practices on newer cultivars within a desert climate are not adequately known. A field study was conducted between Sept. 1996 and Nov. 1997 to evaluate establishment of 15 turf-type tall fescue cultivars under two mowing heights (2 or 3 inches) and two different annual nitrogen (N), phosphorus (P), and potassium (K) application rates (N at 13.2 or 26.4 g·m−2, P at 0.9 or 1.8 g·m−2, and K at 11.0 or 22.0 g·m−2). The cultivars included ‘Amigo’, ‘Apache’, ‘Aztec’, ‘Bonanza’, ‘Chieftain’, ‘Cochise’, ‘Confederate’, ‘Coronado’, ‘Crossfire II’, ‘Falcon’, ‘Guardian’, ‘Kentucky 31’, ‘Leprechaun’, ‘Shortstop’, and ‘Virtue’. The fertilizer rate had no effect on turfgrass quality ratings throughout the establishment period, although overall quality was higher in Fall 1997 than during Spring and Summer 1997. The mowing height of 2 inches increased summer quality ratings of 11 of the 15 cultivars as compared with ratings under the 3-inch mowing height. The 2-inch mowing height improved fall quality ratings of seven of the 15 cultivars. No cultivars responded positively to the 3-inch mowing height. Consistently high summer through fall quality ratings were observed when ‘Apache’, ‘Aztec’, and ‘Crossfire II’ were mowed at the 2-inch height as compared with the other cultivar × mowing height treatment combinations. For turf-type tall fescue establishment in semiarid climates, findings support use of a 2-inch mowing height combined with the selective planting of ‘Apache’, ‘Aztec’, and ‘Crossfire II’ over other cultivar × mowing height combinations tested in the study.

Full access

Geno A. Picchioni, Jagtar Singh, John G. Mexal and Ryan M. Goss

The authors used a simple procedure to teach how to generate evapotranspiration (ET) data for both 1- and 5-gal pots of the xeric shrub apache plume (Fallugia paradoxa) and the mesic vine japanese honeysuckle (Lonicera japonica ‘Halliana’). In-class instruction and assigned reading prepared students for collecting data over a 22-day period (12 Apr. to 3 May), processing data on an electronic spreadsheet, accessing the Internet to acquire reference plant ET data, calculating a crop coefficient (Kc), preparing graphs, organizing a digital presentation, and presenting the findings to commercial nursery participants and instructors. When averaged across days and pot sizes, ET of japanese honeysuckle was 1.22 cm·d−1, whereas ET of apache plume was only 0.80 cm·d−1. This finding supported the students' hypothesis that a nursery block of potted mesic vines would use more water than a nursery block of potted xeric shrubs per unit of ground area. Commercial nursery participants adopted the ET monitoring technique after viewing the student presentation, indicating effective transfer of information by the students. The simple, inexpensive, 3-week exercise furthered the students' horticulture knowledge and comprehension while allowing for a collaborative effort with the local nursery industry.