Search Results
Experiential learning can be used as part of the undergraduate curriculum to provide real-world experience in the classroom. A hands-on hoop house construction project was integrated into an undergraduate general education plant science course at New Mexico State University in Las Cruces. The objectives were to provide students with hands-on experience in hoop house construction and data collection and interpretation, evaluate students’ perception about the educational value of the hoop house construction activity and delivery methods, and evaluate individual student’s perceptions about their participation in the group activity and group dynamics. Eighty-four students were enrolled in Spring 2013 semester. Students were surveyed in a follow-up laboratory 10 weeks after the hoop house construction activity for data collection and reflection. The survey tool assessed the impacts of class materials, laboratory materials, and the laboratory teaching assistants (TAs) on the students’ learning experience: perceptions of group work, their role within their groups, and their participation. Ninety percent and 95% of the students agreed or strongly agreed knowledge of basic techniques and practical application of hoop house construction, respectively, were obtained in the exercise. Eighty-five percent of student respondents indicated a gain in their appreciation for scientific data collection and interpretation through this exercise. Also, a majority (65%) of the students agreed this hands-on task improved their appreciation for group activities indicating experiential learning group work during scheduled class time could be a useful tool for team building and other learning experiences. Finally, more than 90% of the students found this activity overall beneficial. We conclude that integrating hoop house construction and data collection into an undergraduate general education plant science course can be an effective way to enhance student learning.
Tall fescue (Festuca arundinacea) has desirable attributes as a cool-season turfgrass for the semiarid southwestern United States and the transition zone, but effects of cultural practices on newer cultivars within a desert climate are not adequately known. A field study was conducted between Sept. 1996 and Nov. 1997 to evaluate establishment of 15 turf-type tall fescue cultivars under two mowing heights (2 or 3 inches) and two different annual nitrogen (N), phosphorus (P), and potassium (K) application rates (N at 13.2 or 26.4 g·m−2, P at 0.9 or 1.8 g·m−2, and K at 11.0 or 22.0 g·m−2). The cultivars included ‘Amigo’, ‘Apache’, ‘Aztec’, ‘Bonanza’, ‘Chieftain’, ‘Cochise’, ‘Confederate’, ‘Coronado’, ‘Crossfire II’, ‘Falcon’, ‘Guardian’, ‘Kentucky 31’, ‘Leprechaun’, ‘Shortstop’, and ‘Virtue’. The fertilizer rate had no effect on turfgrass quality ratings throughout the establishment period, although overall quality was higher in Fall 1997 than during Spring and Summer 1997. The mowing height of 2 inches increased summer quality ratings of 11 of the 15 cultivars as compared with ratings under the 3-inch mowing height. The 2-inch mowing height improved fall quality ratings of seven of the 15 cultivars. No cultivars responded positively to the 3-inch mowing height. Consistently high summer through fall quality ratings were observed when ‘Apache’, ‘Aztec’, and ‘Crossfire II’ were mowed at the 2-inch height as compared with the other cultivar × mowing height treatment combinations. For turf-type tall fescue establishment in semiarid climates, findings support use of a 2-inch mowing height combined with the selective planting of ‘Apache’, ‘Aztec’, and ‘Crossfire II’ over other cultivar × mowing height combinations tested in the study.
The authors used a simple procedure to teach how to generate evapotranspiration (ET) data for both 1- and 5-gal pots of the xeric shrub apache plume (Fallugia paradoxa) and the mesic vine japanese honeysuckle (Lonicera japonica ‘Halliana’). In-class instruction and assigned reading prepared students for collecting data over a 22-day period (12 Apr. to 3 May), processing data on an electronic spreadsheet, accessing the Internet to acquire reference plant ET data, calculating a crop coefficient (Kc), preparing graphs, organizing a digital presentation, and presenting the findings to commercial nursery participants and instructors. When averaged across days and pot sizes, ET of japanese honeysuckle was 1.22 cm·d−1, whereas ET of apache plume was only 0.80 cm·d−1. This finding supported the students' hypothesis that a nursery block of potted mesic vines would use more water than a nursery block of potted xeric shrubs per unit of ground area. Commercial nursery participants adopted the ET monitoring technique after viewing the student presentation, indicating effective transfer of information by the students. The simple, inexpensive, 3-week exercise furthered the students' horticulture knowledge and comprehension while allowing for a collaborative effort with the local nursery industry.