Search Results
Corn oil and Bacillus thuringiensis ssp. kurstaki (Bt) applied directly into the silk channel of a corn ear has been shown to be an effective pesticide against corn earworm, Helicoverpa zea (CEW), and european corn borer, Ostrinia nubilalis (ECB). Field studies were conducted in 2000 and 2001 to determine the influence of application timing on ear quality at harvest. Two blocks of corn were planted during each year to observe treatment effects under varying populations of the two insect species. The treatment consisted of 0.5 mL (0.017 floz) of food grade corn oil containing a suspension of Bt at 0.08 g (0.003 oz) a.i. per ear applied directly into the silk channel at the husk opening. One treatment application was made on each silk day 3 through 11 from first silk; silk day 1 was the first day that 50% or more of ears had 2.5 cm (1 inch) of silk protruding from the husk. One treatment did not receive the oil + Bt suspension. All ears were harvested at milk stage, on silk day 25. The number of CEW larvae in treated ears increased with later application days in 2000, but not in 2001. Damage from larval feeding was mainly found near the tip of the ear, and damage ratings were lower compared to untreated ears for all treatment days for both plantings in 2000, and through application day 8 in the late planting of 2001. ECB larvae were reduced for all treatment days in both plantings in 2000 and the late planting of 2001. The percentage of ears rated as marketable (i.e., free of feeding damage) ranged from 71% to 100% in treated plots compared to 30% to 77% in the untreated plots. There was a linear decrease in marketability with later application days in two of the four plantings. The greatest decrease in marketability was after application day 7. Because the oil application affects kernel development at the tip, the length of ear with under-developed kernels, or cone tip, was measured. The number of ears with cone tip decreased linearly with the later application days in all plantings. There was 10% conetip or less after day 7 in 2000 and day 6 in 2001. The best combination of effective insect control resulting in the highest rates of marketable ears with the least degree of cone tip was achieved in this experiment by application of oil + Bt suspension on day 7. Year to year variation in the environment would suggest a range from day 6 to 8.
Field studies were conducted in 2000 and 2001 to rate the efficacy and longevity of four pesticide treatments against corn earworm (Helicoverpa zea) larvae (CEW) in sweet corn (Zea mays). The four treatments used were 1) corn oil, 2) Bacillus thuringiensis ssp. kurstaki (Bt), 3) oil + Bt, and 4) an untreated plot. All treatments were applied on silk day 5. Silk day 1 was the first day that more than 50% of the ears had 2.5 cm (1 inch) or more silks emerging from the husk using a hand-held pump applicator. Two first-instar CEW larvae were placed directly into silk channel of selected ears on 6 different days (days 3, 6, 9, 12, 15, and 18 after first silk). The same six ears were then harvested 4 days later. Untreated ears had more live CEW and higher levels of feeding damage than the other three treatments ears for all harvest days in both years. The number of CEW found per ear was lower when Bt was included in the treatment. The use of corn oil gave the lowest damage ratings on almost all harvest days in both years. Treatments which contained oil had the highest number of marketable ears in both years, but also the highest percentage of underdeveloped kernels at the tip of the ear (6% to 9%). The oil and Bt treatments appeared to control CEW for at least 17 days, from silking through maturity. This treatment regime appears to be a promising alternative for growers to conventional pest management methods.
High demand for local produce year-round has led growers in the northeastern United States to experiment with fall planting of bulbing onion (Allium cepa) for spring harvest. Over two seasons, we evaluated survival, bolting, and bulbing of several cultivars of fall-planted onion in two sites in New Hampshire. Plants were seeded in August and September, and transplanted in September and October into raised beds covered with black plastic mulch. Low tunnels covered with 1.25-oz/yard2 rowcover and one layer of 6-mil-thick clear polyethylene were installed over the plants in late fall. Harvest dates ranged from 19 Apr. to 6 June in 2012, and from 22 May to 2 July in 2013. All onion cultivars showed high percentages of survival (65% to 100%). Cultivar, planting date, and the interaction between the two had a significant effect on the percentage of bolting and bulb diameter at harvest. In general, those planted later exhibited lower percentages of bolting and slightly smaller bulbs at harvest. Our work demonstrates that it is possible to harvest large bulbed onions in May and June in the northeastern United States in U.S. Department of Agriculture (USDA) hardiness zones 4B and 5B using low-tunnel season extension technology. This may provide additional marketing opportunities for growers in cold climates.