Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Russell Pressey x
  • All content x
Clear All Modify Search
Free access

Russell Pressey

Polygalacturonase (PG) in higher plants has been considered to be associated with ripening fruits although it is now known to be present in foliage and storage organs. We recently found very high levels of PG in some grass pollens (Plant Science 59, 57-62, 1989). This prompted an examination of other pollens for PG activity. All of the pollens analyzed contained PG but the range of activities was great. Eastern cottonwood pollen contained the most PG, with a level about 12 times higher than that usually found in ripe tomato fruit. Pollens from the other members of Populus were generally high in PG. Pollens from the oak family also contained very high PG, with the highest amount in white oak pollen. Pollens from pecan, English walnut, willows, birch and hickories contained moderate levels of PG. The lowest amounts of PG were found in pollens from beech, sycamore and conifers. The PG's from the two richest sources (eastern cottonwood and white oak pollens) were partially purified and characterized. Both enzymes were found to be exopolygalacturonases that require Ca2+ for activity. PG may be involved in some function related to pollination but an explanation for the wide range of activities indifferent pollen is not obvious.

Free access

Russell Pressey

Polygalacturonase (PG) in higher plants has been considered to be associated with ripening fruits although it is now known to be present in foliage and storage organs. We recently found very high levels of PG in some grass pollens (Plant Science 59, 57-62, 1989). This prompted an examination of other pollens for PG activity. All of the pollens analyzed contained PG but the range of activities was great. Eastern cottonwood pollen contained the most PG, with a level about 12 times higher than that usually found in ripe tomato fruit. Pollens from the other members of Populus were generally high in PG. Pollens from the oak family also contained very high PG, with the highest amount in white oak pollen. Pollens from pecan, English walnut, willows, birch and hickories contained moderate levels of PG. The lowest amounts of PG were found in pollens from beech, sycamore and conifers. The PG's from the two richest sources (eastern cottonwood and white oak pollens) were partially purified and characterized. Both enzymes were found to be exopolygalacturonases that require Ca2+ for activity. PG may be involved in some function related to pollination but an explanation for the wide range of activities indifferent pollen is not obvious.

Free access

Russell Pressey

Chinese water chestnuts retain crispness during heating much better than most vegetables. To help explain this unusual property of water chestnuts, a study was conducted to determine their cell wall composition and to assay some of the enzymes that may be involved in hydrolysis of cell walls and starch. Water chestnuts were found to contain high levels of β-1,3-glucanase and β-glucosidase but low cellulase. A number of other enzymes were detected including invertase, α- and β-galactosidases and α-mannosidase. A rather high level of amylase is present in water chestnuts and most of the activity appears to be due to β-amylase. Water chestnuts contain low pectinesterase but a moderate amount of polygalacturonase which was purified and characterized. It is an exoenzyme that does not require Ca2+ for activity in contrast to most other exopolygalacturonases. An unusual property of the water chestnut polygalacturonase is its stability to heat, with retention of most of its activity after heating at 80°C for 5 min. The cell walls of water chestnuts contain low pectin which is solubilized slowly by pectic enzymes.

Free access

Russell Pressey and Richard B. Russell

Polygalacturonase inhibitors have been reported in a number of dicotyledonous plant tissues including pear and raspberry fruits and bean seedlings. These proteins inhibit fungal polygalacturonases and thus have been implicated in disease resistance in plants. The earlier work on the inhibitor from bean plants was conducted with hypocotyls as the source. We have found that immature bean pods contain much more inhibitor than other parts of the plant and developed a procedure for purification of this inhibitor. Fresh bean pods were extracted with 1.0 M NaCl at pH 7 and the proteins were precipitated with ammonium sulfate. The proteins were dissolved, dialyzed and chromatographed on a column of S-Sepharose. The inhibitor from this step was then chromatographed on a Mono Q column at high pH. Yields of the inhibitor varied somewhat with bean cultivar and pod maturity but were about ten times higher than from hypocotyls. The purified inhibitor reacted optimally with Aspergillus niger endopolygalacturonase at pH 4.3 and appeared to be similar to the inhibitor from hypocotyls. Bean pods thus are a convenient source of polygalacturonase inhibitor for studies on fruit maturation and disease resistance in plants.

Free access

Elizabeth A. Baldwin and Russell Pressey

Exopolygalacturonase (exo-PG) (EC 3.2.1.67) was investigated for ability to induce ethylene production in green cherry tomatoes (Lycopersicon esculentum Mill.). The fruit were vacuum-infiltrated with various levels of exo-PG from green tomato fruit, squash flower, or oak pollen and compared to boiled enzyme or salt controls for ethylene production. In all cases, fruit treated with active enzymes produced significantly higher levels of ethylene than did control fruit. The ethylene response was evident 2 hours after treatment and was transient in nature, returning to basal levels by 22 hours. The amount of ethylene produced did not appear to be influenced by the source of exo-PG.

Free access

Floyd M. Woods and Russell Pressey

Pectinesterase is present in green tomato fruit and increases several-fold during ripening. Several isoenzymes of pectinesterase can be separated by chromatography of tomato extracts on DEAE-Sephadex A-50. The predominant isoenzyme in most tomato cultivars including Better Boy has been designated PE IV. This isoenzyme accounts for most of the increase in total pectinesterase during ripening of these cultivars. The fruit of some cherry tomato cultivars such as Pixie and Short Red contain some PE IV, but the major isoenzyme is PE III which occurs only in these cultivars. PE III and PE IV were isolated from ripe fruit of Short Red and Better Boy, respectively, to further characterize differences between the isoenzymes. PE III binds more strongly to cation exchangers, indicating that it is more basic than PE IV, The molecular weights were estimated by gel filtration to be 26,900 and 25, 100 for PE III and PE IV, respectively. Polyclonal antibodies were raised against the two enzymes. Cross reactivity of the enzymes with the antibodies indicates that PE III and PE IV are immunologically identical.

Free access

C.M. Sean Carrington and Russell Pressey

Activity of ß-galactosidase II (EC 3.2.1.23), which can hydrolyze ß-galactan from tomato cell walls, increased markedly during ripening of `Roma' and `Rutgers' tomatoes (Lycopersicon esculentum Mill.). Activity of two other ß-galactosidase isozymes, incapable of galactan hydrolysis, was present in green fruit and remained unchanged throughout ripening. ß-Galactosidase II activity was not detectable in green fruit of either cultivar, appearing first at the breaker stage of `Roma' fruit and not until the pink stage of `Rutgers' fruit. Consistent with this, galactose loss from Na2CO3-soluble pectin (NSP) was detectable at an earlier stage in `Roma' vs. `Rutgers' fruit. A greater decline in NSP galactose was evident in `Roma' fruit compared to `Rutgers' fruit, in keeping with the higher levels and longer period of ß-galactosidase II expression in the former. Significant galactose loss from trans -1,2-diaminocyclohexane-N,N,N',N' -tetraacetic acid-soluble pectin, in contrast, was not seen until the last stage of ripening. These results indicate that the long-reported, net galactosyl loss from the cell walls of ripening tomatoes correlates with ß-galactosidase II activity. Nonetheless, the observation that softening commenced before ß-galactosidase II activity or galactose loss was detectable suggests some other basis for the earliest stages of ripening-related fruit softening in tomato.

Free access

Russell Pressey and C.M. Sean Carrington

Tomatoes contain several isozymes of β-galactosidase, but only one, β-galactosidase II, can hydrolyze the β-1,4-galactans in tomato cell walls. β-galactosidase II has now been highly purified by modification of the original procedure. The molecular weight of this isozyme is ≈62 kDa according to gel infiltration, but SDS-PAGE of the purified enzyme separated three components with molecular weights of 29, 42, and 82 kDa. The 82-kDa peptide may be the intact enzyme and the smallest peptides are subunits as proposed for other β-galactosidases. The N-terminal amino acid sequence of β-galactosidase II showed high homology with amino acid sequences reported for other plant β-galactosidases. A new assay for β-galactosidase II in tomato extracts has been developed using FPLC. This isozyme was not detected in mature-green tomatoes but appeared at about the breaker stage and increased during ripening. The increase in b-galactosidase II was accompanied by a decrease in galactose content of cell wall polysaccharides, suggesting that this enzyme may be involved in the loss of galactose during tomato ripening.

Free access

Teresa A. Morrison, Russell Pressey, and Stanley J. Kays

Staple-type lines of sweetpotato [Ipomoea batatus (L.) Lam.] do not sweeten significantly upon cooking as compared to the traditional-type lines. Four lines exhibiting distinct differences in sweetness after cooking were evaluated for changes in α- and ß-amylase activity and reducing sugars (by HPLC) at harvest, after curing, and at intervals during 180 days of storage. The traditional cultivar `Jewel' and staple-type line `Sumor' displayed high a- and ß-amylase activities, which rose from low levels at harvest to peak levels ≈ 90 days into the storage period. Staple-type lines `99' and `86' displayed significantly lower a- and ß-amylase activities. By using polyclonal sweetpotato ß-amylase antibody and western blot following native- and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it was confirmed that a lower level of ß-amylase synthesis existed in `99' and `86'. Quantitatively, `Jewel', `Sumor', and an additional staple-type line, `HiDry', had 361,374, and 365 μg ß-amylase protein per gram of fresh storage root tissue, respectively, while `99' and `86' possessed <60 and 12 μg·g-1, respectively. In raw roots, individual (glucose, fructose, and sucrose) and total sugar concentrations were significantly higher in `Jewel' than in `Sumor', `99', or `86'. Only trace amounts of maltose were found in raw roots of any line. Sucrose, glucose, and fructose concentrations decreased with baking in all lines except `86', in which they increased. There was substantial maltose produced by baking `Jewel' and `Sumor', but only trace amounts found in baked `99' and `86'. Sweetpotato germplasm can be separated into four general classes based on initial sugar concentration and changes during cooking: 1) low sugars/low starch hydrolysis, 2) low sugars/high starch hydrolysis, 3) high sugars/low starch hydrolysis, and 4) high sugars/high starch hydrolysis. At least two mechanisms may confer the lack of starch hydrolysis and subsequent sweetening in staple-type sweetpotato: 1) inhibition of ß-amylase synthesis, and 2) a nonenzyme mediated mechanism.