Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Russell L. Groves x
Clear All Modify Search
Free access

Steven J. Damon, Russell L. Groves and Michael J. Havey

Natural variation exists in onion (Allium cepa L.) for amounts of epicuticular waxes on foliage, and plants with lower amounts of these waxes suffer less feeding damage from onion thrips (Thrips tabaci Lind.). Wild-type onion possesses copious amounts of epicuticular waxes and is often referred to as “waxy.” The recessively inherited “glossy” phenotype has significantly less wax relative to waxy types and shows resistance to onion thrips but is vulnerable to spray damage, foliar pathogens, and excessive transpiration. Phenotypes visually intermediate between waxy and glossy also exist in onion, which we refer to as “semiglossy.” Epicuticular waxes on the leaves of glossy, semiglossy, and waxy onions were evaluated for appearance using scanning electron microscopy (SEM) and amounts and types were analyzed using gas chromatography/mass spectrometry. Wax crystals were clearly visible on the surface of waxy foliage with decreasing amounts on semiglossy and none on glossy leaves. The ketone hentriacontanone-16 was the most prevalent wax on leaves of waxy onion and was significantly (P < 0.01) less on semiglossy relative to waxy plants and on glossy relative to waxy and semiglossy plants. Numbers of adult and immature onion thrips were significantly reduced (P < 0.05) on glossy and/or semiglossy accessions relative to waxy in field and greenhouse cage experiments. These results indicate that semiglossy plants possess intermediate amounts of epicuticular waxes that may protect leaves from diseases or environmental stresses while still conferring resistance to onion thrips. Therefore, the semiglossy phenotype should be useful in integrated programs managing this important onion pest.

Open access

Eduardo D. Munaiz, Russell L. Groves and Michael J. Havey

Onion thrips (Thrips tabaci) is the main insect pest of onion (Allium cepa), and feeding damage routinely causes serious yield losses. Lower amounts of epicuticular waxes on onion leaves have been associated with fewer onion thrips and less feeding damage, and research is needed to assess the relationships between amounts and composition of epicuticular waxes and feeding damage by onion thrips. This study used gas chromatography mass spectroscopy to determine amounts and types of epicuticular waxes on the foliage of onion accessions that had been field-selected for lower damage from onion thrips. Hentriacontanone-16 (H16), octaconasol-1, and triacontanol-1 were the most prevalent waxes on the foliage of these selections. Amounts of H16 were significantly lower on selections visually classified as having glossy or semiglossy foliage. Semiglossy selections were identified with similar amounts of total epicuticular wax as waxy phenotypes, due primarily to lower amounts of H16 and higher amounts of other waxes. These semiglossy selections suffered significantly less feeding damage from onion thrips in a field evaluation, supporting the identification of unique wax profiles toward the development of thrips-resistant onion.