Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Rui Qi x
Clear All Modify Search
Restricted access

Qi Wang, Rui Zhao, Qihang Chen, Jaime A. Teixeira da Silva, Liqi Chen and Xiaonan Yu

Herbaceous peony is a perennial flowering plant with strong environmental adaptability and may be a good candidate for culture in arid areas. In this study, the physiological and biochemical responses of two herbaceous peony cultivars to different soil moisture gradients in pots were assessed by analyzing changes in 13 stress-related indices. The drought damage index (DDI) and the contents of malondialdehyde (MDA), soluble sugar, proline, and abscisic acid (ABA) generally increased as drought stress intensified, whereas leaf relative water content (LRWC) decreased, and the contents of soluble protein, indole-3-acetic acid (IAA), the ratio of IAA and ABA, and the activities of four antioxidant enzymes fluctuated. For the leaves, a positive correlation was found between DDI and superoxide dismutase (SOD), MDA, soluble sugar, proline, ascorbate peroxidase (APX), and ABA, but it was negatively correlated with LRWC, peroxidase (POD), and catalase (CAT). In fibrous roots, DDI was positively correlated with MDA, soluble sugar, proline, soluble protein, and ABA but was negatively correlated with SOD, CAT, APX, and IAA/ABA. Principal component analysis and subordinate functions were used to evaluate drought resistance of the two cultivars, with ‘Karl Rosenfield’ showing greater resistance to drought than ‘Da Fu Gui’.

Free access

Zhong-Hua Bian, Rui-Feng Cheng, Qi-Chang Yang, Jun Wang and Chungui Lu

Light-emitting diodes (LEDs) have shown great potential for plant growth and development, with higher luminous efficiency and more flexible and feasible spectral control compared with other artificial lighting. The combined effects of red and blue (RB) LED with or without green (G) LED light and white LED light on lettuce (Lactuca sativa L.) growth and physiology, including nitrate content, chlorophyll fluorescence, and phytochemical concentration before harvest, were investigated. Continuous light exposure at preharvest can effectively reduce nitrate accumulation and increase phytochemical concentrations in lettuce plants. Nitrate accumulation is dependent on the spectral composition and duration of treatment: lettuce exposed to continuous RB (with or without G) LED light with a photosynthetic photon flux (PPF) of 200 µmol·m−2·s−1 exhibited a remarkable decrease in nitrate content at 24 hour compared with white LED light treatment at the same PPF. In addition, RB LED light (R:B = 4:1) was more effective than white LED light at the same PPF in facilitating lettuce growth. Moreover, continuous LED light for 24 hours significantly enhanced free-radical scavenging activity and increased phenolic compound concentrations. We suggest that 24 hours continuous RB LED with G light exposure can be used to decrease nitrate content and enhance lettuce quality.

Restricted access

Ying Qu, Xue Bai, Yajun Zhu, Rui Qi, Geng Tian, Yang Wang, Yonghua Li and Kaiming Zhang

Leaves of Begonia semperflorens accumulate anthocyanins and turn red under low temperature (LT). In the present work, LT increased H2O2 content and superoxide anions production rate, causing significant increases in the activities of enzymes and contents of reduced components involved in the ascorbate-glutathione cycle (AsA-GSH cycle). As a result, LT-exposed seedlings increased the expression of genes involved in anthocyanin biosynthesis, and accumulated anthocyanin. Based on LT condition, application of N,N'-dimethylthiourea (DMTU) decreased reactive oxygen species (ROS) content, and unbalanced the AsA-GSH-controlled redox homeostasis. As a result, seedlings in the LT + DMTU group did not accumulate anthocyanin. Our results suggest that ROS may act as an important inducer in LT-induced anthocyanin biosynthesis.