Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Ru Zhang x
Clear All Modify Search
Open access

Bingqiang Wei, Lanlan Wang, Paul W. Bosland, Gaoyuan Zhang and Ru Zhang

A cytoplasmic male sterility (CMS) system is one of the most efficient ways to produce F1 hybrid seeds in pepper (Capsicum annuum). Restorer-of-fertility (Rf) genes are a critical component within the CMS/Rf system. The inheritance of Rf genes in pepper by joint segregation analysis was examined. The inheritance of Rf genes in the two progenies was controlled by two major additive-dominant epistatic genes and additive-dominant epistasis polygene. The two major genes had high additive effects and dominant effects. In addition, there existed significant epistatic effects between the two major genes. The major genes had high heritability in F2, BC1, and BC2 generations. Also, the fertility restorer characteristic can be selected during early generations of the breeding cycle.

Free access

Ji Tian, Zhen-yun Han, Li-ru Zhang, Ting-Ting Song, Jie Zhang, Jin-Yan Li and Yuncong Yao

Anthocyanins are protective pigments that accumulate in plant organs such as fruits and leaves, and are nutritionally valuable components of the human diet. There is thus considerable interest in the factors that regulate synthesis. Malus crabapple leaves are rich sources of these compounds, and in this study we analyzed leaf coloration, anthocyanin levels, and the expression levels of anthocyanin biosynthetic and regulatory genes in three crabapple cultivars (Royalty, Prairifire, and Flame) following various temperature treatments. We found that low temperatures (LTs) promoted anthocyanin accumulation in ‘Royalty’ and ‘Prairifire’, leading to red leaves, but not in ‘Flame’, which accumulated abundant colorless flavonols and retained green colored leaves. Quantitative reverse transcript PCR (RT-PCR) analyses indicated that the expression of several anthocyanin biosynthetic genes was induced by LTs, as were members of the R2R3-MYB, basic helix–loop–helix (bHLH) and WD40 transcription factor families that are thought to act in a complex. We propose that anthocyanin biosynthesis is differentially regulated in the three cultivars by LTs via the expression of members of this anthocyanin regulatory complex.