Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Roy B. Dodd x
Clear All Modify Search

Increased soil moisture and temperature along with increased soil microbial and root activity during summer months elevate soil CO2 levels. Although previous research has demonstrated negative effects of high soil CO2 on growth of some plants, little is known concerning the impact high CO2 levels on creeping bentgrass (Agrostis palustris Huds.). The objective of this study was to investigate effects of varying levels of CO2 on the growth of creeping bentgrass. Growth cells were constructed to U.S. Golf Association (USGA) greens specification and creeping bentgrass was grown in the greenhouse. Three different levels of CO2 (2.5%, 5.0%, and 10.0%) were injected (for 1 minute every 2 hours) into the growth cells at a rate of 550 cm3·min-1. An untreated check, which did not have a gas mixture injected, maintained a CO2 concentration <1%. Gas injection occurred for 20 days to represent a run. Two runs were performed during the summer of 1999 on different growth cells. Visual turf quality ratings, encompassing turf color, health, density, and uniformity, were evaluated every 4 days on a 1-9 scale, with 9 = best turf and <7 being unacceptable. Soil cores were taken at the end of each run. Roots were separated from soil to measure root depth and mass. Turf quality was reduced to unacceptable levels with 10% CO2, but was unaffected at lower levels over the 20-day treatment period. Soil CO2 ≥2.5% reduced root mass and depth by 40% and 10%, respectively.

Free access

Use of creeping bentgrass [Agrostis stoloniferous L. var. palustris (Huds.)] on golf greens has expanded into the hotter, more humid regions of the United States where its quality is often low during summer months. The summer decline in bentgrass quality may be partially attributed to respiration rates exceeding photosynthesis during periods of supraoptimal temperatures and adverse soil conditions, such as excessive CO2 and inadequate O2 levels. The objectives of this study were to examine the effects of high temperature, high soil CO2, and irrigation scheduling on creeping bentgrass growth. A growth chamber study was conducted using `A-1' creeping bentgrass. Treatments included all combinations of three day/night temperature regimes (26.5/21 °C, 29.5/24 °C, and 32/26.5 °C), three irrigation schedules (field capacity daily, field capacity every two d, and half field capacity daily), and four soil CO2 injection levels (10%, 5%, 0.03%, and a noinjection control). Creeping bentgrass shoot and root dry weights and net photosynthetic rates were greater for day/night temperatures <32/26.5 °C. High temperatures (32/26.5 °C) and 10% CO2 reduced bentgrass net photosynthesis by 37.5 μmol CO2/m2/s. Shoot and root total nonstructural carbohydrates also were lowest for highest temperature regime. Respiration exceeded gross photosynthesis at 32/26.5 °C when 5% and 10% CO2 injection levels were used, indicating a carbon deficit occurred for these conditions. Irrigation volume and frequency did not affect bentgrass growth. High temperatures combined with high soil CO2 levels produced poorest turf quality.

Free access