Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Roy A. Larson x
Clear All Modify Search
Full access

Roy A. Larson

Full access

Roy A. Larson

Plastic products have revolutionized commercial floriculture. Even plastic flowers have caused a new marketing consideration because they are quite competitive with the marketing of live material. Plastic pots are used widely because they are lightweight, attractive, and relatively inexpensive. Plastic flats and trays have been readily accepted by the consumer, and were instrumental in the development of plug culture. Major components of automatic watering systems are made of plastic, and much of the plumbing practiced in commercial floriculture is done with plastic pipe and fittings. Plastic foams are used in floral arrangements, growing media, and propagation cubes or strips. Plastic is used to make steam-sterilization covers, shading material for the manipulation of both light intensity and photoperiod, and mulches or ground covers to help control weeds. Very large quantities of plastic are used in commercial floriculture, and recent landfill restrictions have necessitated procedures for recycling. Recycling procedures are known, but logistics and economics of recycling have not been resolved completely.

Free access

Michelle L. Bell, Roy A. Larson and Douglas A. Bailey

Experiments were designed to determine if the combination of 6-benzyl adenine + gibberellic acid 4+7 can promote increased lateral shoots of desirable number and length on azaleas (Rhododendron simsii Planch.). The use of dikegulac-sodium with the addition of GA4+7 was also investigated to determine if GA4+7 could overcome decreased plant height and diameter caused by dikegulac application. Treatments were applied by spraying 204 ml·m-2 to pinched plants of mean diameter and mean height of 16 and 13 cm, respectively, potted in 1.3 liter plastic containers. Shoot number, plant height and plant diameter were measured 9 weeks after application for the commercially prominent cvs. `Gloria' and `Prize'. Preliminary results indicate that 2100 mg·l-1 ai BA + 2100 mg·l-1 ai GA4+7 increases number of lateral shoots. Initial results suggest the addition of 2100 mg·l-1 ai GA4+7 to 3900 mg·l-1 ai dikegulac overcomes inhibition of internodal elongation induced by dikegulac alone. Further studies will determine the effectiveness of Promalin (N-(phenylmethyl)-1H-purine-6-amine + GA4+7, 1:1) as a pinching agent on azaleas.

Free access

Michelle L. Bell, Roy A. Larson and Douglas A. Bailey

Dikegulac, dikegulac + GA4+7, BA, and Promalin (GA4+7 + BA) were evaluated as lateral shoot-inducing agents on greenhouse forcing azalea, Rhododendron cultivars Gloria and Prize. The addition of GA4+7 (1000 or 2000 mg.L-1) to a commercial rate of dikegulac (3900 mg.L-1) did not effectively increase plant diameter or leaf width compared to plants sprayed with dikegulac alone. The combination of dikegulac and GA4+7 (3900 + 2000 mg.L-1, respectively) was more phytotoxic than dikegulac alone. Foliar sprays of BA and Promalin at 1000 and 2000 mg.L-1 and 1000 and 1816 mg.L-1, respectively, did not increase lateral shoot count. Neither the addition of GA4+7 to dikegulac nor the use of Promalin is a viable alternative to dikegulac application for inducing lateral branch development of dikegulac-sensitive cultivars. Chemical names used: Na 2,3:4,6-Bis-0-(l-methylethylidene)-α-L-xylo-2-hexulofuranosonic acid (dikegulac), (lα,2β,4aα,4bβ,10β)-2,4a,7-trihydroxy-l-methyl-8-methylenegibb-3-ene-l,10-dicarboxylic acid l,4a-lactone (GA4+7),N-(phenylmethyl)-lH-purin-6-amine (BA), and Promalin [1:1 (wt/wt) GA4+7 and BA].

Free access

Michelle L. Bell, Roy A. Larson and Douglas A. Bailey

Experiments were designed to determine if the combination of 6-benzyl adenine + gibberellic acid 4+7 can promote increased lateral shoots of desirable number and length on azaleas (Rhododendron simsii Planch.). The use of dikegulac-sodium with the addition of GA4+7 was also investigated to determine if GA4+7 could overcome decreased plant height and diameter caused by dikegulac application. Treatments were applied by spraying 204 ml·m-2 to pinched plants of mean diameter and mean height of 16 and 13 cm, respectively, potted in 1.3 liter plastic containers. Shoot number, plant height and plant diameter were measured 9 weeks after application for the commercially prominent cvs. `Gloria' and `Prize'. Preliminary results indicate that 2100 mg·l-1 ai BA + 2100 mg·l-1 ai GA4+7 increases number of lateral shoots. Initial results suggest the addition of 2100 mg·l-1 ai GA4+7 to 3900 mg·l-1 ai dikegulac overcomes inhibition of internodal elongation induced by dikegulac alone. Further studies will determine the effectiveness of Promalin (N-(phenylmethyl)-1H-purine-6-amine + GA4+7, 1:1) as a pinching agent on azaleas.