Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Rose E. Palumbo x
Clear All Modify Search
Free access

Rose E. Palumbo and Richard E. Veilleux*

A hybrid between a highly regenerative diploid clone (BARD 1-3) of Solanum phureja and haploid inducer IVP 101 was transformed with Agrobacterium tumefaciens strain 4404 containing plasmid pHB2892 with genes for green florescent protein (GFP) and kanamycin resistance. Hemizygous primary transformants (To) were produced from three leaf discs: 17 diploid plants from one leaf disc, three and nine tetraploids from the other two leaf discs. GFP expression was observed qualitatively under fluorescence microscopes and quantitatively with a GFP meter. Segregation ratios for tetraploid T1 seedlings fit models for single duplex insertions (35 transgenic: 1 non) or double simplex insertions (15 transgenic: 1 non). Diploid T1 seedlings segregated for deleterious traits: dwarfed size and curled leaves, as well as the GFP transgene. Similar segregation patterns in diploid families implied that all diploids may have been from the same transformation event. The cumulative segregation showed the dwarfed and curled plants fit a single recessive gene ratio (3 normal: 1 mutant), and GFP fit a double-copy insertion ratio (15 transgenic: 1 non). Six T1 selections were free of deleterious traits, consistently high expressers of GFP, and produced fertile pollen.

Free access

Rose E. Palumbo, Wai-Foong Hong, Jinguo Hu, Charles Krause, James Locke, Richard Craig, David Tay and Guo-Liang Wang

Pelargonium is one of the priority genera collected by the Ornamental Plant Germplasm Center (OPGC). In order to protect future breeders from a loss of genetic diversity, the OPGC collects heirloom cultivars, breeding lines, and wild species. The current Pelargonium collection consists primarily of cultivars originating from P. ×hortorum and P. ×domesticum. Our project was designed to analyze the current collection in order to facilitate the maintenance of a more-diverse core collection. We have expanded our TRAP (Target Region Amplified Polymorphism) analysis from 120 plants with one primer set to include 780 plants with four primer sets. Each primer set consists of a labeled arbitrary primer paired with a gene-specific primer, and two different fluorescent labels were used to allow multiplexed PCR reactions. We scored about 90 markers in each of the first two primer sets and about 60 markers in each of the second two. In comparisons between the phylogeny and the morphology and taxonomy of these plants, we show some matching clusters that may be explained by the breeding history of the plants.