Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Roni Cohen* x
Clear All Modify Search

The use of grafted vegetables as one of the alternatives to soil disinfestation with methyl bromide is increasing in Israel. Watermelon (Citrullus lanatus) and melon (Cucumis melo) plants are grafted mainly onto Cucurbita rootstocks for lessening losses due to soil-borne pathogens. The contribution of the rootstock to the grafted plant's resistance depends on the nature of the disease. In general, damage caused by non-specific root-rot pathogens such as Rhizoctonia solani, Macrophomina phaseolina, Monosporascus cannonballus, and Pythium spp. are effectively reduced by using Cucurbita rootstocks. However, these rootstocks provide only partial protection from vascular diseases such as fusarium wilt, in which case better protection can be achieved by grafting susceptible melons onto monogenic fusarium-resistant melon rootstocks. The performance of the grafted plants depends not only on the rootstock but also on the scion response to pathogens and on the effect of the environment on disease development. The response of grafted and non-grafted melons of different cultivars to sudden wilt disease caused by the fungus Monosporascus cannonballus was evaluated in field trials conducted in the fall and spring growing seasons. Significant differences in disease incidence were found among cultivars, between grafted and non-grafted plants, and between seasons. Grafting reduced plant mortality in the spring and fall experiments but prevention of yield losses was more effective in the spring. More emphasis should be given to finding suitable rootstocks and adjusting agrotechniques for successful commercial cultivation of grafted melons in the fall.

Free access

Melon plants grafted on Cucurbita rootstock may suffer from nutritional deficiencies due to reduced absorption and translocation of minerals to the foliage. Melon (Cucumis melo L.) cv. 6023 was grafted onto two interspecific Cucurbita rootstocks (Cucurbita maxima × Cucurbita moschata) ‘TZ-148’ and ‘Gad’. Nongrafted melons were used as controls. Two fertilization field experiments were conducted in walk-in tunnels in the northern Arava valley of southern Israel. Two fertigation regimes were used: 1) standard and 2) enriched for magnesium (Mg; 150 mg·L−1), manganese (Mn; 7.5 mg·L−1), and zinc (Zn; 0.75 mg·L−1) to increase the concentrations of the lacking elements. The enriched fertigation significantly increased Mn, Zn, and Mg contents in the leaf tissue. Concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sodium (Na), chloride (Cl), iron (Fe), and boron (B) were unaffected by the enriched fertilizer. There were no deficiency symptoms in grafted plants supplied with the enriched fertilizer.

Free access