Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Rongfu Gao x
Clear All Modify Search

Dendrobium officinale, endemic to China, is a rare and endangered medicinal herb. As a result of its high economic value, slow growth, and diminishing wild population, protected cultivation is preferred. However, little information is available on its growing environment and photosynthetic characteristics. In this study, the photosynthetic patterns of D. officinale were investigated under various environmental conditions by measuring the net CO2 exchange rates continuously for several days or weeks. Under non-stressed growth chamber conditions with 12-hour light and 12-hour dark periods, D. officinale had concomitance of C3 and crassulacean acid metabolism (CAM) photosynthesis patterns. Different degrees of CAM in D. officinale, expressed as the percentage of CO2 exchanges in the dark period to the daily amount of CO2 exchanges, were observed depending on environmental conditions. With decreasing substrate water content, a typical CAM pattern was found, and concomitance of C3 and CAM patterns was found again when plants were rewatered. The accumulation of leaf titratable acidity during a dark period increased as substrate dried out but decreased again as plants were rewatered. A shorter light–dark cycle (4-hour light and 4-hour dark periods) led to a C3 pattern alone. The substrate moisture and light–dark cycle were inducible factors for switching between C3 and CAM patterns in D. officinale. These results indicate that D. officinale is a facultative CAM plant and the C3 pathway can be induced by controlling the growing environment. Further studies are needed to identify the optimal environmental conditions to enhance the growth of D. officinale.

Free access

It is known that the redistribution of water and the formation of dispersed water units appears to be a prerequisite for deep supercooling. A concentration of the cell solute results from the migration of water during extracelullar freezing and lowers the temperature of homogeneous nucleation, but we are convinced that nucleation of ice within cells may be initiated by a heterogeneous mechanism, except we consider a small spherical cave, the water can freeze on the wall of this cave. We are also convinced that the solid walls of the capillary exert an external potential on the water molecules, causing the shift of the triple point of the confined fluids. Based on Fletcher's work for spherical particle, we have gotten the formula of critical free energy in the process of heterogeneous nucleation of water in a small spherical cave. This presentation introduces the theoretical background and counts the drop of temperature in heterogeneous nucleation. Then, putting two actions (depression of triple point and process of heterogeneous nucleation) together, we have calculated the freezing point. Sometimes it is lower than –38 °C. Some phenomena can be explained by using this theory: 1) Water is at the tension status, which means that it wets plant tissue, so the triple point (melting point) of tissue water can be lowered. 2) The redistribution of water, formation of dispersed water units, and dry region preventing ice from propagating, all allow heterogeneous nucleation, then the two actions can be synthesized and the water would lead to deep supercooling. If the barriers were destroyed, heterogeneous nucleation and deep supercooling would certainly be lost. 3) This theory is only suited to rigid wall of small cave, so we understand why cell wall rigidity has been shown to affect freezing characteristics. Project 39870234 supported by National Nature Science Foundation.

Free access