Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Rong Zhou x
Clear All Modify Search
Authors: and

The banning of synthetic fungicides for postharvest use on fruits in Canada has prompted a search for alternative control strategies for postharvest brown rot caused by Monilinia fructicola (Wint.) Honey on sweet cherry (Prunus avium L.). Thymol and carvacrol were the two most potent fungicides among the monoterpenoids tested. The brown rot incidences of M. fructicola-inoculated cherry dipped in 1000 μg·mL-1 thymol and carvacrol were 24% and 23%, respectively, compared with 81% for the control. The effects of thymol and carvacrol were not significantly enhanced by the addition of CaCl2 or CaB'y®, a foliar calcium fertilizer. Decco® 282 significantly reduced the activity of thymol. Methyl jasmonate, an elicitor of plant defense mechanisms, did not reduce brown rot by itself, and did not increase the efficacy of thymol and carvacrol when used as an additive in dipping or fumigation experiments. Thymol and carvacrol caused stem browning of cherry fruits in the fumigation experiment, however, 69% and 73%, respectively, of the browning was prevented when methyl jasmonate was used as a co-fumigant. Chemical names used: 5-methyl-2-(1-methylethyl)phenol (thymol); 2-methyl-5-(1-methylethyl)phenol (carvacrol); methyl 3-oxo-2-(2-pentenyl)cyclopentane acetate (methyl jasmonate).

Free access

Thermosensitive genic male sterile (TGMS) lines are the core of two-line hybrid systems. MicroRNAs (miRNAs) play critical roles in plant growth and development. However, knowledge of regulation of anther development by miRNAs in TGMS eggplant (Solanum melongena) is largely unexplored. To investigate the mechanism underlying miRNA regulation of male sterility, we employed high-throughput small RNA sequencing in anther samples from the reverse TGMS line 05ms and the temperature-insensitive line S63 in eggplant, under high temperature and low temperature conditions. The 05ms line is sterile at low temperature and fertile at high temperature. A total of 166,273,427 raw reads were obtained, 143 known miRNAs from 42 miRNA families and 104 novel miRNAs were detected. Further, six differentially expressed miRNAs (DEMs) were identified, including three known (miR168b-3p, miR397–5p, and miR408) and three novel miRNAs (Novel_116, Novel_119, and Novel_97), which might be related to anther development. Moreover, the six DEMs were validated by quantitative real-time polymerase chain reaction and 892 target genes of which were predicted. Gene Ontology analysis of target genes revealed significant enrichment in the “copper ion binding,” “oxidation-reduction process,” and “oxidoreductase activity” terms. Kyoto Encyclopedia of Genes and Genomes analysis revealed that “plant hormone signal transduction” and “other glycan degradation” were enriched. In addition, we constructed regulatory networks comprising miRNAs, target genes, and important terms/pathways and found the miR397-5p was the most linked miRNA, down-regulated under low temperature. Our findings contribute to understanding of the roles of miRNA during anther development and provide the theoretical foundation for two-line hybrid breeding of eggplant.

Open Access

We studied the effects of exogenous spermidine (Spd) on plant growth and nitrogen metabolism in two cultivars of tomato (Solanum lycopersicum) that have differential sensitivity to mixed salinity-alkalinity stress: ‘Jinpeng Chaoguan’ (salt-tolerant) and ‘Zhongza No. 9’ (salt-sensitive). Seedling growth of both tomato cultivars was inhibited by salinity-alkalinity stress, but Spd treatment alleviated the growth reduction to some extent, especially in ‘Zhongza No. 9’. Exogenous Spd may help reduce stress-induced increases in free amino acids, ammonium (NH4 +) contents, and NADH-dependent glutamate dehydrogenase (NADH-GDH) activities; depress stress-induced decreases in soluble protein and nitrate content; and depress nitrate reductase, nitrite reductase, glutamine synthetase (GS), NADH-dependent glutamate synthase (NADH-GOGAT), glutamate oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT) activities, especially for ‘Zhongza No. 9’. Based on our results, we suggest that exogenous Spd promotes the assimilation of excess toxic NH4 + by coordinating and strengthening the synergistic action of NADH-GDH, GS/NADH-GOGAT, and transamination pathways, all during saline-alkaline stress. Subsequently, NH4 + and its related enzymes (GDH, GS, GOGAT, GOT, and GPT), in vivo, are maintained in a proper and balanced state to enable mitigation of stress-resulted damages. These results suggest that exogenous Spd treatment can relieve nitrogen metabolic disturbances caused by salinity-alkalinity stress and eventually promote plant growth.

Free access