Search Results
You are looking at 1 - 9 of 9 items for
- Author or Editor: Ronald L. Thomas x
The effects of short-term soil flooding on gas exchange characteristics of containerized sour cherry trees (Prunus cerasus L. cv. Montmorency /P. mahaleb L.) were studied under laboratory conditions. Soil flooding reduced net CO2 assimilation (A) within 24 hours. Net CO2 assimilation and residual conductance to CO2(gr′) declined to ≈30% of control values after 5 days of flooding. Effects on stomatal conductance to CO2 (gS) and intercellular CO2 (Ci) were not significant during the 5 days of treatment. Apparent quantum yield (Φ) gradually declined to 52% that of controls during these 5 days. In a second experiment, CO2 response curves suggested that, initially, stomatal and nonstomatal limitations to A were of about equal importance; however, as flooding continued, nonstomatal limitations became dominant.
`Imperial Gala' apple trees (Malus ×domestica Borkh.) on M.9 EMLA, MM.111, and Mark rootstocks were subjected to two drought-stress and recovery periods in a rainshelter. Water relations, gas-exchange parameters per unit leaf area and per tree, chlorophyll fluorescence, and leaf abscisic acid content were determined during each stress and recovery period. Whole-plant calculated gas exchange best indicated plant response to drought stress, with consistent reductions in CO2 assimilation, transpiration, and leaf conductance. Variable and maximal chlorophyll fluorescence and fluorescence quenching were not as sensitive to stress. Other fluorescence parameters showed little difference. The most consistent decreases due to stress for gas exchange per square meter were in transpiration and leaf conductance, with few differences in CO2 assimilation and fewer for mesophyll conductance, internal CO2 concentration, and water-use efficiency. Leaf water potential was consistently lower during drought stress and returned to control values upon irrigation. Leaf abscisic acid content was higher for drought-stressed trees on M.9 EMLA than control trees during the stress periods but inconsistently different for the other rootstock treatments. Trees on M.9 EMLA were least affected by drought stress, MM.111 was intermediate, and Mark was the most sensitive; these results are consistent with the growth data.
`Imperial Gala' apple (Malus domestica Borkh.) trees, trained to two shoots, on M.9 EMLA, MM.111, and Mark rootstocks were subjected to two drought-stress and recovery periods in a rainshelter. Leaf growth rate, leaf area, leaf emergence, shoot length, and trunk cross-sectional area were measured during each stress and recovery period. Leaf growth rate was reduced during both stress periods but most consistently during the second drought stress. Length of the less-vigorous shoot was reduced most consistently due to drought stress but did not recover upon irrigation. Leaf emergence and trunk cross-sectional area increment were inconsistent in response to stress. Tree growth was reduced by drought stress to the greatest extent for trees on Mark, with MM.111 intermediate and M.9 EMLA least affected. At termination, the plants were separated into roots, current-season shoot growth, previous-season shoot growth, and rootstock, and dry weights were measured. Dry weights confirmed the growth measurements taken during the experiment with a 16%, 27%, and 34% reduction in total plant dry weight for drought-stressed trees on M.9 EMLA, MM.111, and Mark, respectively, compared to corresponding controls. It was concluded that Mark was the most sensitive of the three rootstocks followed by MM.111; M.9 EMLA was the most drought resistant.
Root distribution of `Starkspur Supreme Delicious' on nine apple (Malus domestics Borkh.) rootstock grown in two different soil types in the 1980 NC-140 Uniform Apple Regional Rootstock Trial (Michigan and Ohio sites) was determined using the trench profile method. Based on the number of roots counted per tree, rootstock could be separated into five groups for the Marlette soil from most to least: MAC.24 > OAR1 > M.26EMLA = M.9EMLA > M.7EMLA = 0.3 = M.9 = MAC.9 > M.27EMLA. For the Canfield soil, rootstock were ranked for number of roots counted from most to least as follows: MAC.24 > OAR 1. MAC.9 = M.7EMLA > M.26EMLA = O.3 = M.9 EMLA = M.9. Root distribution pattern by depth was affected by soil type with roots fairly well distributed throughout the Marlette soil but restricted primarily above the fragipan in the Canfield soil. Two rootstock performed differently from others in adapting to soil conditions at the different sites. MAC.9 had the second lowest number of total roots/dm2 in the Marlette soil yet the second most in the Canfield soil, while the opposite was found for M.9EMLA. Regression analysis demonstrated positive correlations between number of roots counted and vigor and yield of the scion.
This study was conducted to evaluate the accuracy of sap analysis using a portable nitrate ion meter for cauliflower (Brassica oleracea L. Botrytis Group, cv. Candid Charm) petiole nitrate determination. The relationship between NO3-N concentration in fresh petiole sap and in dried petiole tissue was studied for cauliflower grown in southern Arizona during the 1993–94 and 1994–95 growing seasons. Experiments were factorial combinations of three water rates and four N rates, both ranging from deficient to excessive. Petioles were collected throughout each season and were split for analysis of sap NO3-N and dried petiole NO3-N. Linear correlations between the two methods were similar in both seasons, with no consistent effect due to water application rate or crop maturity. Therefore, a single regression equation was derived: petiole sap NO3-N (mg·liter–1) = 0.047 × dry petiole NO3-N (mg·kg–1) + 218 (r2 = 0.772). This equation can be used to relate sap test measurements to existing guidelines for NO3-N concentrations in cauliflower petioles. These results suggest that the quick sap test, using the portable nitrate ion meter, is a valuable technique for monitoring N status of cauliflower.
One-year-old `Imperial Gala' on Mark, M.9 EMLA, and MM.1ll; and `Indian Summer' on MM.lll and MM.106 rootstocks were planted in a rain exclusion shelter in May 1991. All trees were irrigated. Half the trees were drought stressed and received no water for two, 30-day drought cycles. Four trees from each scion ×rootstock×irrigation combination were excavated in mid-October. Nonstructural carbohydrate reserves of stems and roots were determined. Cold hardiness, determined by visual examination of tissue after controlled freezing, was influenced by rootstock, drought, and stem age. Concentrations of several carbohydrates were correlated with cold hardiness. Regression models of carbohydrate concentrations on cold hardiness were significant. Removal of root tissue, which was cold sensitive and had high carbohydrate levels, altered the regression equations. Rootstock significantly influenced root concentrations of sorbitol, sucrose, and starch. Root sorbitol increased following drought stress. Mark and MM.106 roots had the largest increases in sorbitol. Irrigated Mark roots had very low levels of sorbitol.
The purpose of this review is to promote a discussion about the potential implications of herb production in controlled environments, focusing on our recent works conducted with feverfew. Research suggests that the content of secondary metabolites in medicinal plants fluctuates with changing environmental conditions. Our studies with feverfew (Tanacetum parthenium [L.] Schultz-Bip., Asteraceae) lend support to this hypothesis. Feverfew plants exposed to different water and light conditions immediately before harvest exhibited changes in content of some secondary metabolites. The highest yield of parthenolide (PRT) was in plants that received reduced-water regimes. Phenolics concentration however, was higher in plants receiving daily watering. Light immediately before harvest enhanced accumulation of PRT, but reduced the phenolic content. Notably, PRT decreased at night whereas total phenolics decreased during the photoperiod and increased at night. PRT also increased with increased plant spacing. UV light supplementation increased PRT only in plants that had undergone water stress, whereas phenolics increased when UV was applied to continuosly watered plants. Clearly, production of medicinal plants under greenhouse conditions is a promising method for controlling levels of phytochemicals through manipulation of light and water as discussed here, and possibly other environmental factors such as temperature and daylength. However, better understanding of how the environment alter secondary metabolite levels is needed as it was revealed that manipulating the environment to favor increased accumulation of one group of phytochemicals could result in a decline of other key metabolites.
Optimizing growing conditions and, thereby, plant growth reduces the susceptibility of plants to many disease and insect pest problems. Educating lawn or landscape management professionals and homeowners about plant health management reduces the need for chemical intervention. Pesticides combined with N and P fertilizers contribute to water pollution problems in urban areas; thus, it is important to manage the amount, timing, and placement of chemicals and fertilizers. To educate consumers applying pesticides and fertilizers in residential gardens, we must educate the sales representatives and others who interact most closely with consumers. Evidence suggests that knowledge about the effects of chemicals is limited and that warning labels are not read or are ignored. Integrated pest management (IPM) offers alternatives to conventional chemical treatments, but such methods are not used commonly because of their relatively high cost and their uncertain impact on pests. Pest detection methods and using pest-resistant plants in landscapes are simple and, in many cases, readily available approaches to reducing the dependence on chemical use. Research on effective, low-cost IPM methods is essential if chemical use in landscape management is to decrease. Current impediments to reducing the pollution potential of chemicals used in the landscape include the limited number of easily implemented, reliable, and cost-effective alternative pest control methods; underfunding of research on development of alternative pest control measures; limited knowledge of commercial operators, chemical and nursery sales representatives, landscape architects, and the general public concerning available alternatives; reluctance of the nursery industry to produce, and of the landscape architects to specify the use of, pest-resistant plant materials; lack of economic or regulatory incentive for professionals to implement alternatives; inadequate funding for education on the benefits of decreased chemical use; and the necessity of changing consumer definition of unacceptable plant damage. We need to teach homeowners and professionals how to manage irrigation to optimize plant growth; use sound IPM practices for reducing disease, weed, and insect problems; and minimize pollution hazards from fertilizers and pesticides.
Pesticides have been the primary method of pest control for years, and growers depend on them to control insect and disease-causing pests effectively and economically. However, opportunities for reducing the potential pollution arising from the use of pesticides and fertilizers in environmental horticulture are excellent. Greenhouse, nursery, and sod producers are using many of the scouting and cultural practices recommended for reducing the outbreak potential and severity of disease and insect problems. Growers are receptive to alternatives to conventional pesticides, and many already use biorational insecticides. Future research should focus on increasing the effectiveness and availability of these alternatives. Optimizing growing conditions, and thereby plant health, reduces the susceptibility of plants to many disease and insect pest problems. Impediments to reducing the use of conventional pesticides and fertilizers in the environmental horticulture industry include 1) lack of easily implemented, reliable, and cost-effective alternative pest control methods; 2) inadequate funding for research to develop alternatives; 3) lack of sufficient educational or resource information for users on the availability of alternatives; 4) insufficient funding for educating users on implementing alternatives; 5) lack of economic or regulatory incentive for growers to implement alternatives; and 6) limited consumer acceptance of aesthetic damage to plants. Research and broadly defined educational efforts will help alleviate these impediments to reducing potential pollution by the environmental horticulture industry.