Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Ronald H. Blackley x
Clear All Modify Search

Fertilizer rates of N, P, K were evaluated over 4 years (2000–03) as were different sources of experimental and commercial fertilizers. The highest total yields and yields of jumbos (≥7.6 cm) occurred with nitrogen rates of 140–168 kg·ha–1. Neither phosphorus nor potassium rates had an affect on total yield. Phosphorus rates of 0-147 kg·ha–1 and potassium rates of 0–177 kg·ha–1 were evaluated. Increasing nitrogen fertilizer resulted in increasing leaf tissue nitrogen, but did not affect P, K, Ca, or S. Increasing phosphorus fertilizer increased leaf tissue phosphorus only slightly (p = 0.060) with no affect on other leaf nutrient levels. Increasing potassium fertilizer did affect leaf tissue potassium 2 out of 4 years with none of the other leaf nutrient levels affected. Several fertilizers were also evaluated including an experimental fortified peat (10%N), calcium nitrate, ammonium nitrate, diammonium phosphate, 5–10–15 (56 kg·ha–1 N), 18-6-8 liquid, 14–0–12 8%S liquid, 19–8–19 slow-release at rates of 140 and 168 kg·ha–1 nitrogen. All were used to supply 168 kg·ha–1 nitrogen unless noted otherwise. P and K were supplied according to soil test recommendations unless they were part of the fertilizer formulation. There were no differences between the different fertilizer sources for total yield and differences in jumbo yields only occurred one year out of three years of testing and for medium (≥5.1 and <7.6 cm) yields there were differences two years out of three years of testing.

Free access

The majority of Vidalia onions are produced as a transplanted crop. Seeding in high density plantings in September is followed 8 to 10 weeks later by transplanting to final spacing. This practice is labor intensive and expensive. Direct seeding would save on labor, cost, and time. Traditionally, transplanting has been done because of better winter survival, more uniform stands, and better irrigation management during seedling emergence. Beginning 5 years ago, we began evaluating direct seeding onions. Initially, seedstems (bolting) and lack of uniform stand establishment were the main problems. Sowing in September resulted in almost 100% seedstems and using a belt planter with raw seed resulted in poor singulation for uniform stand establishment. Mid-October ultimately proved to be the best time for sowing Vidalia onion seed. Earlier sowing resulted in more seedstems and later planting did not give the plants sufficient time to grow resulting in later stand loss during cold winter temperatures. Using polymer coated seed and a precision vacuum planter resulted in uniform, even stand establishment. Fertilizer requirements are almost half with direct seeded onions compared to transplanted onions with a reduction in the need for fungicides and herbicides. We have established direct seeded onions both with drip irrigation and overhead irrigation. There was concern that center-pivot irrigation would not be able to sufficiently irrigate fields during seedling establishment with the frequent hot fall days we experience. Since this work was initiated several growers have successfully produced direct seeded onions under center-pivot systems. Direct seeding Vidalia onions requires attention to detail because there is only one opportunity to get it right. Timing is also critical particularly with planting date and herbicide application.

Free access

Short-day onion (Allium cepa) variety trials were conducted in southeastern Georgia from 2000–03. Data collected and evaluated included total yield, graded yield, harvest date, number of seedstems, number of doubles, number of onion centers, bulb shape, disease incidence, bulb pungency, and storability in controlled atmosphere (CA) storage. Fifty-eight varieties were evaluated in the trials with 10 varieties appearing in all 4 years. Twenty-nine varieties appeared only once in the trials. Eight varieties had jumbo yields (≥3-inch diameter) that were not significantly different from the greatest jumbo yielding variety in 2 of the 4 years of testing and included `Century', `EX 19013', `Georgia Boy', `Mr. Buck', `Sapelo Sweet', `Savannah Sweet', `Sweet Vidalia', and `WI-609'. Early season varieties were strongly daylength dependent with foliar lodging occuring early and uniformly. Late season varieties were more prone to bacterial infection particularly if postharvest heat curing was employed. Although significant differences between varieties for seedstems (flower formation) and bulb doubling occurred almost every year, environmental conditions were an important part of their development. Five varieties had seedstems in 2 of the 3 years seedstems were prevalent that did not differ from the greatest number of seedstems for that year and included `Cyclops', `Georgia Boy', `Mr. Buck', `Pegasus', and `SSC 6372 F1'. `Sapelo Sweet' and `Sweet Advantage' had more than 5% bulb doubling in 3 years of the trials. Pungency as measured by pyruvate analysis ranged from 1.1 to 5.4 μmol·g–1 fresh weight (FW) over the 4 years of trials. There were nine varieties that were, for 2 years or more, among the greatest in percent marketable onions after 4.5 months of CA storage: `Georgia Boy', `Granex 1035', `Granex 33', `Ohoopee Sweet', `Sapelo Sweet', `Savannah Sweet', `Sweet Melissa', `Sweet Melody', and `SRO 1000'.

Full access