Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Ron M. Wik x
Clear All Modify Search

Two experiments were completed to determine whether the form and concentration of iron (Fe) affected Fe toxicity in the Fe-efficient species Pelargonium ×hortorum `Ringo Deep Scarlet' L.H. Bail. grown at a horticulturally low substrate pH of 4.1 to 4.9 or Fe deficiency in the Fe-inefficient species Calibrachoa ×hybrida `Trailing White' Cerv. grown at a horticulturally high substrate pH of 6.3 to 6.9. Ferric ethylenediaminedi(o-hydroxyphenylacetic) acid (Fe-EDDHA), ferric ethylenediamine tetraacetic acid (Fe-EDTA), and ferrous sulfate heptahydrate (FeSO4·7H2O) were applied at 0.0, 0.5, 1.0, 2.0, or 4.0 mg ·L–1 Fe in the nutrient solution. Pelargonium showed micronutrient toxicity symptoms with all treatments, including the zero Fe control. Contaminant sources of Fe and Mn were found in the peat/perlite medium, fungicide, and lime, which probably contributed to widespread toxicity in Pelargonium. Calibrachoa receiving 0 mg Fe/L exhibited severe Fe deficiency symptoms. Calibrachoa grown with Fe-EDDHA resulted in vigorous growth and dark green foliage, with no difference from 1 to 4 mg·L–1 Fe. Using Fe-EDTA, 4 mg Fe/L was required for acceptable growth of Calibrachoa, and all plants grown with FeSO4 were stunted and chlorotic. Use of Fe-EDDHA in water-soluble fertilizer may increase the upper acceptable limit for media pH in Fe-inefficient species. However, iron and Mn present as contaminants in peat, irrigation water, or other sources can be highly soluble at low pH. Therefore, it is important to maintain a pH above 6 for Fe-efficient species regardless of applied Fe form or concentration, in order to avoid the potential for micronutrient toxicity.

Free access

The objective was to evaluate and compare foliar spray and soil drench application methods of iron (Fe) for correcting Fe deficiency in hybrid calibrachoa (Calibrachoa × hybrida) grown in a container medium at pH 6.9 to 7.4. Untreated plants showed severe chlorosis and necrosis, stunting, and lack of flowering. An organosilicone surfactant applied at 1.25 mL·L-1 (0.160 fl oz/gal) increased uptake of Fe from foliar applications of both ferrous sulfate (FeSO4) and ferric ethylenediamine tetraacetic acid (Fe-EDTA). Foliar sprays at 60 mg·L-1 (ppm) Fe were more effective when Fe was applied as Fe-EDTA than FeSO4. Increasing Fe concentration of foliar sprays up to 240 mg·L-1 Fe from Fe-EDTA or 368 mg·L-1 Fe (the highest concentrations tested) from ferric diethylenetriamine pentaacetic acid (Fe-DTPA) increased chlorophyll content compared with lower spray concentrations, but leaf necrosis at the highest concentrations may have been caused by phytotoxicity. Drenches with ferric ethylenediaminedi(o-hydroxyphenylacetic) acid (Fe-EDDHA) at 20 to 80 mg·L-1 Fe were highly effective at correcting Fe-deficiency symptoms, and had superior effects on plant growth compared with drenches of Fe-DTPA at 80 mg·L-1 Fe or foliar sprays. Efficacy of Fe-DTPA drenches increased as concentration increased from 20 to 80 mg·L-1 Fe. An Fe-EDDHA drench at 20 to 80 mg·L-1 Fe was a cost-effective option for correcting severe Fe deficiency at high medium pH.

Full access