Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Ron Cohen x
Clear All Modify Search


The effects of paclobutrazol (cultar, PP333) on yield and fruit quality of muskmelon (Cucumis melo L. var. reticulatus Naud. cv. Galia) were examined in a series of field experiments, in the spring at Newe Ya’ar (northern Israel) and in autumn at Biq’at HaYarden (lower Jordan Valley, eastern Israel). In the spring experiments, paclobutrazol applied at 2 and 4 mg·liter−1 as a drench to the media-mix of muskmelon transplants increased total fruit yield 15% to 20% at various plant populations and in combination with ethephon and/or chlorflurenol, but tended to decrease the early yield. Yield increase was due to an increase in fruit weight rather than number. Paclobutrazol, in general, tended to improve marketable yield, yield concentration, and netting index. In the autumn experiment, paclobutrazol was applied at 250 mg·liter−1 as a spray from flowering through fruit maturation and compared with benzyladenine (BA), and N, P, and K fertilization. Paclobutrazol reduced early leaf-yellowing symptoms, but was not as effective as BA. Paclobutrazol in the autumn experiment did not affect yield or yield components, but soluble solids content was significantly increased and keeping-quality was unaffected. Chemical names used: β-[(4-chlorophenyl)methyl]-α-(1,1-dimethylethyl)-1H-1,2,4-triazole-l ethanol (paclobutrazol); (2-chloroethyl)phosphonic acid (ethephon); (methyl-2-chloro-9-hydroxyfluorene-(9)-carboxylate) (chlorflurenol); benzyladenine (BA).

Open Access

Excess of boron and salinity in soil and irrigation water can limit the production of melons (Cucumis melo). A greenhouse study was conducted in order to compare the responses of grafted and non-grafted melon plants to combinations of high levels of boron and salinity. Boron levels were 0.25, 0.8, 2.5, 5.0, 10.0 mg·L-1 and salinity levels were 1.8 and 4.6 dS·m-1. Foliar injury caused by boron was more severe in the non-grafted than in the grafted plants. Likewise, boron accumulation in leaf tissue from non-grafted plants was higher than in grafted plants. High salinity led to decreased boron accumulation in the leaves. Fruit yield was decreased only at a boron concentration of 10 mg·L-1, and the decrease in grafted plants was smaller than that in non-grafted plants. A negative correlation was found between boron accumulation in leaves and fruit yield. The results showed that melon plants grafted on Cucurbita rootstock are more tolerant than non-grafted ones to high boron concentrations, and this can probably be explained by the decrease in boron accumulation caused by the rootstock.

Free access

Jasmonic acid (JA) and methyl jasmonate (MJ), collectively referred to as jasmonates, are naturally occurring plant growth regulators involved in various aspects of plant development and responses to biotic and abiotic stresses. In this study, we found that postharvest application of jasmonates reduced decay caused by the green mold Penicillium digitatum (Pers.: Fr.) Sacc. after either natural or artificial inoculation of grapefruit (Citrus paradisi `Marsh Seedless'). These treatments also effectively reduced chilling injury incidence after cold storage. The most effective concentration of jasmonates for reducing decay in cold-stored fruit or after artificial inoculation of wounded fruit at 24 °C was 10 μmol·L-1. Higher and lower jasmonate concentrations were less effective at both temperatures. MJ at 10 μmol·L-1 also most effectively reduced the percentage of fruit displaying chilling injury symptoms after 6 weeks of storage at 2 °C and 4 additional d at 20 °C. When tested in vitro, neither JA nor MJ had any direct antifungal effect on P. digitatum spore germination or germ tube elongation. Therefore, it is suggested that jasmonates probably reduced green mold decay in grapefruit indirectly by enhancing the natural resistance of the fruit to P. digitatum at high and low temperatures.

Free access