Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Roger Getz x
Clear All Modify Search

An agricultural weather program has been developed in Alabama and is available on the ACENET computer network of the Alabama Cooperative Extension Service (ACES). This program involves the coordinated efforts of the National Weather Service (NWS), ACES and grower organizations. The program began in March 1987 and has been upgraded several times. Hardware now being used includes a Sun Microsystem SPARC station by NWS and a Sun Microsystems Server Model 4/280 by ACES. Existing and experimental NWS forecast products are disseminated to each of Alabama's 67 county agents offices (CEAs) and to local producers using ACES' computer network. A comprehensive selection of climate and weather related information is available to ACES staff including a widely used freeze alert program. Very detailed freeze forecasts and related information is available to users hourly, 7 days a week. A specialist prepared commentary further enhances use of information during each freeze event. Considerable cost savings have been realized by producers. A pilot program is being initiated in 1991 to incorporate data from several real time weather stations into the system.

Free access

In order to provide timely weather information to county agents (CEA) and growers, a sophisticated user friendly weather information program was developed that provides over 900 weather files daily to users. This program uses a 420 Sun Server that automatically downloads files from the NWS office on the AU campus and makes them instantly available to CEA offices via the Extension Network. Growers may obtain information from CEAS or use their personal computers to access a “Weather Board”. A chilling/growing degree hour (GDH) model (mod. 45) has been developed for peaches that provides a good estimate of when rest is completed and allows prediction of phenological stages through flowering. This information assists growers with orchard management decisions. Studies with peaches were conducted using the chilling/GDH model to properly apply hydrogen cyanamide (Dormex) to replace lack of chilling. This work resulted in an effective application timing based on chilling accumulation and allowed development of a forecast model for grower use.

Free access