Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Robert W. Roberson x
Clear All Modify Search

Effects of VAM fungal inoculum, Glomus intraradices Schenk & Smith, on the growth of Chilean mesquite in containers were investigated as part of a nursery container system for production of xeric trees. Seedling liners of Chilean mesquite were transplanted into 27-liter containers filled with a 3 pine bark : 1 peat moss : 1 sand medium. Before transplanting, 50% of the trees were band-inoculated at a depth of 8 to 12 cm below the growth medium surface with 35 g per container of Glomus intradices (Nutrilink, NPI, Salt Lake City, UT), approximately 1,000 spores g-1. All trees were top-dressed with 15 g Osmocote 18N-2.6P-9.9K (Grace-Sierra, Milpitas, CA) and 3 g Micromax (Grace-Sierra, Milpitas, CA) fertilizers and grown in a fiberglass greenhouse under 50% light exclusion. After 4 months, all inoculated tree root systems were colonized, and the percent infection was 47%. Noninoculated trees remained nonmycorrhizal. There were no differences in height, total shoot length, shoot dry weight, or root dry weight between inoculated and non-inoculated trees; however, total root length and specific root length of inoculated trees were less than those of noninoculated trees. These results suggest that the VAM fungi altered the root architecture of inoculated trees such that root systems of these trees had thicker roots with fewer fine roots elongating into the growth medium profile.

Free access

Hydration and elemental absorption of two commercially-available polyacrylamide gels (A and B) were studied in response to a 24-hr soak time in Hoagland's solution concentrations of either 2X, 1X, 0.5X, 0.25X, 0.125X or 0X (deionized water). Elemental absorption of gel specimens was observed and analyzed within the gel matrix on a Philips CM12S STEM equipped with an EDAX 9800 plus EDS unit for micro x-ray analysis. Thick sections were cut on dry glass knives using an RMC MT6000 ultramicrotome. Surface analysis of bulk specimens was made with an AMR 1000A SEM plus PGT1000 EDS unit. Overall, gel hydration decreased quadratically as solution concentration increased linearly; however, hydration for gel A was generally greater than for gel B. Surface analysis of gel samples revealed the presence Ca, K, P, S, Fe, and Zn for both gels. An analysis within the matrix of gel B revealed the presence of Ca, K, P, S, Fe, and Zn; however, an analysis within the matrix of gel A revealed the presence of Zn, and Fe only. The increased absorptive capacity of gel A appeared to be coupled to reduced migration of salts into the gel matrix.

Free access