Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Robert Veberic x
Clear All Modify Search
Free access

Jerneja Jakopič, Franci Štampar and Robert Veberič

The objective of this work was to compare the contents of cyanidin glycosides and quercetin glycosides in the skin of apples grown with or without hail nets and using reflective foil or not. Under hail nets, photosynthetically active radiation was 10% to 30% lower in comparison with the control treatment. Covering the orchard floor with reflective foil had a positive effect on lighting, particularly on the lower parts of the fruit. Fruit coloration depends on the contents of anthocyanins copigmented with flavonols, the synthesis of which is light-dependent. The content of the main cyanidin glycoside in ‘Fuji’ apple, cyanidin galactoside, was lowest in the control treatment as well as concentrations of cyanidin arabinoside and two other cyanidin pentosides. Reflective foil caused a higher cyanidin glycoside content. Among flavonols, quercetin galactoside, quercetin glucoside, quercetin pentoside, quercetin arabinofuranoside, quercetin xyloside, quercetin rutinoside, quercetin rhamnoside, and quercetin were detected. Hail net and reflective foil both affected the increasing quercetin–glycosides contents. The highest amounts were achieved in the treatment under the hail net, where the orchard floor was covered with reflective foil. We also analyzed catechin, epicatechin, and chlorogenic acid. The lowest amounts of these were measured in the skin of fruit grown on trees under hail nets. In the control treatment, contents of those phenolic compounds were equal or higher, whereas the highest concentrations were detected in the treatments using reflective foil, where lighting was also higher in comparison with the treatments without it.

Free access

Anita Solar, Robert Veberic and Franci Stampar

Free access

Anita Solar, Jerneja Jakopič, Robert Veberič and Franci Štampar

Prohexadione-calcium (ProCa), formulated as Regalis, was tested as a vegetative growth inhibitor in rejuvenated annual shoots of 14-year-old mother trees in the ‘Franquette’ walnut cultivar. ProCa was applied three times during growing seasons in 2005 (Y5) and 2006 (Y6). This was during the second half of spring growth flush, the resting phase between the first and second growth flushes, and in the middle of summer growth flush. As a result, treated shoots in the upper part of the canopy were shorter than untreated ones during the whole growing season in both years. In Y5, two treatments of ProCa (250 mg·L−1), applied until the middle of June, inhibited shoot elongation during summer growth, which was the main purpose of the experiment. The reduction of shoot elongation was between 18% [lower shoots in the canopy (LS)] and 33% [upper shoots (US)]. After three ProCa applications, also the final length of the shoots was reduced by 5% (US) and 18% (LS). In Y6, when 100 mg·L−1 of ProCa had been used, strong reduction (24%) was observed only in US after two treatments. Summer growth was not reduced, probably as a result of an interaction between lower concentration of ProCa and stress caused by a water deficit and extremely high temperatures during the summer. On the base of the shoots, three treatments of ProCa (100 mg·L−1) in Y6 increased the ratio between wood and pith and, consequently, increased the quality and uniformity of the scion wood. Further research into additional cultivars and ProCa concentrations is recommended to optimize the terms of application.

Free access

Valentina Schmitzer, Robert Veberic, Gregor Osterc and Franci Stampar

The concentration of major anthocyanins, quercetins, catechin, and phenolic acids during flower development of Rosa ×hybrida L. ‘KORcrisett’ was quantified using high-performance liquid chromatography/mass spectrometry. Additionally, the changes in petal color were monitored colorimetrically at four different stages of development (bud, partially open flowers, fully open flowers, senescent flowers) and correlation was calculated between the chromaticity parameters and major/total anthocyanins. Color parameters a*, b*, and h° decreased with the progression of flower development and a*/b* ratio and lightness (L*) increased. In rose petals, a negative trend in the content of major (pelargonidin-3,5-di-O-glucoside, cyanidin-3,5-di-O-glucoside) and minor (pelargonidin-3-O-glucoside, cyanidin-3-O-glucoside, peonidin-3-O-glucoside) anthocyanins was observed during flower development. Buds contained almost threefold higher concentrations of pelargonidin-3,5-di-O-glucoside and fourfold higher concentrations of cyanidin-3,5-di-O-glucoside than senescent flowers. Buds also contained significantly more quercetins (quercetin-3-O-rutinoside, quercetin-3-O-glucoside, and quercetin-3-O-rhamnoside), catechin, and phenolic acids (gallic acid, protocatechulic acid, chlorogenic acid, caffeic acid, p-coumaric acid) than flowers of subsequent developmental stages. The most significant differences were observed in the content of gallic acid; buds contained almost sixfold higher values than senescent flowers. Correlation analysis revealed a strong correlation between chromaticity parameters a*, b*, a*/b* ratio, , L*, and major/total anthocyanins with values ranging from 0.60 to –0.84.

Free access

Valentina Schmitzer, Robert Veberic, Gregor Osterc and Franci Stampar

In the present study, the chemical and morphological status of eight cultivars of groundcover rose (Rosa ×hybrida) with a range of flower colors was investigated. From the methanolic extracts of rose petals collected from flowers at four developmental stages, several phenolic compounds were identified via high-performance liquid chromatography/mass spectrometry, including five anthocyanins, which are especially important for the visual attributes of rose flowers. Colorimetric parameters were also measured and correlated with total anthocyanins and cell sap pH levels. During flower development from bud to senescent stage, a significant trend was detected; lightness (L*) increased, b* decreased in all analyzed roses, and a* decreased in pink and red cultivars. Cell sap pH level increased from bud to senescent petals; fresh weight, dry weight, and water content increased to fully open stage and were then reduced in senescent petals. Total anthocyanin and quercetin content increased from bud stage to fully open flowers, and was decreased in senescent ones. However, the highest content of total phenolics was measured in buds and partially opened flowers, respectively. Three distinct groups were formed according to the content of total anthocyanins and quercetins; white cultivars were most distant from the red ones, which were similar to the pink and light red cultivars.

Free access

Jan Bizjak, Nika Weber, Maja Mikulic-Petkovsek, Ana Slatnar, Franci Stampar, Zobayer Alam, Karl Stich, Heidi Halbwirth and Robert Veberic

The influence of two foliar applications of Phostrade Ca, which contains high concentrations of phosphorus and minor amounts of calcium and nitrogen, on color development and selected primary and secondary metabolites was investigated during advanced maturation of ‘Braeburn’ apple. Changes of hydroxycinnamic acids, flavanols, dihydrochalcones, flavonols, and anthocyanins were monitored six times during the advanced ripening until technological maturity of the fruits. Additionally, the changes in the chromatic values a*, h°, and the lightness coefficient L* were recorded weekly. The colorimetric parameters showed a significant difference in the intensity of red coloration between the treated and untreated apples. Spraying with Phostrade Ca also resulted in a significant increase in most individual sugars, total sugars, and concentration of anthocyanins and flavonols. Moreover, the amount of phosphorus (P) in the treated leaves was increased. However, the total phenolic content and accumulation of other classes of flavonoids such as hydroxycinnamic acids, flavonols, and dihydrochalcones were not influenced. Phostrade Ca treatment significantly increased dihydroflavonol 4-reductase (DFR) and slightly flavanone-3-hydroxylase (FHT) activity, which were correlated with anthocyanin synthesis but had no effect on phenylalanine ammonia lyase (PAL) and chalcone synthase/chalcone isomerase (CHS/CHI) activity. The results indicate that two foliar applications of Phostrade Ca late in the growing season represent an effective way to improve the color of ‘Braeburn’ apples at commercial harvest.