Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: Robert Steiner x
Clear All Modify Search
Free access

Ousmane Sy, Paul W. Bosland and Robert Steiner

The pathogen Phytophthora capsici Leon. is known to be a limiting factor of chile pepper (Capsicum L.) production around the world. The genetics of the resistance is becoming better understood due to the specific nature of the host-pathogen interaction, i.e., all plant organs are subject to infection. It has been shown that phytophthora root rot resistance and phytophthora foliar blight resistance are under different genetic mechanisms. This study aimed at understanding the inheritance of resistance of phytophthora stem blight and to determine whether phytophthora stem blight was the same disease syndrome as phytophthora root rot and phytophthora foliar blight. Stem cuttings of a segregating F2 population and testcross progeny facilitated the ability to screen for two disease syndromes concurrently. When the three disease syndromes were compared separately, the F2 populations fit a 3 resistant (R): 1 susceptible (S) ratio and the testcross progenies fit a 1R:1S ratio. When comparative studies were performed (stem vs. foliar and stem vs. root), the F2 populations fit a 9R/R:3R/S:3S/R:1S/S ratio and the testcross fit a 1R/R:1R/S:1S/R:1S/S ratio. These ratios are consistent of a single gene controlling the resistance of each system. Therefore, phytophthora stem blight, root rot, and foliar blight are three separate disease syndromes.

Free access

Yayeh Zewdie, Paul W. Bosland and Robert Steiner

The inheritance of capsaicinoid content was studied in five Capsicum pubescens Ruiz & Pav. genotypes using diallel analysis. General combining ability and specific combining ability effects were significant for all capsaicinoids studied, indicating additive and nonadditive gene actions are present. The association of high capsaicinoid contents with high positive general combining ability of the parents also indicates the predominance of additive gene action in capsaicinoid inheritance. Because of the predominant additive gene effect, recurrent selection would be a good breeding method to increase capsaicinoid level in the population studied. Heterosis was observed in hybrids for some of the capsaicinoids, suggesting that F1 hybrids could also be used to increase capsaicinoid content.

Full access

Neel Kamal, Ashish Saxena, Robert L. Steiner and Christopher S. Cramer

Black mold, caused by the fungus Aspergillus niger, is one of the major postharvest onion (Allium cepa) diseases causing qualitative and quantitative losses. To screen autumn-sown onion cultivars for black mold resistance, 12 cultivars were sown in 2004 and 2005 in Las Cruces, NM. Percent sporulated area, disease severity, and disease incidence were recorded after 2 and 4 weeks of storage. ‘Texas Early White’ exhibited less disease symptoms than other cultivars tested. For all cultivars, disease symptoms in terms of severity and incidence increased as bulbs were stored for longer periods of time.

Free access

Lisa M. Oelke, Paul W. Bosland and Robert Steiner

Despite extensive breeding efforts, no pepper (Capsicum annuum L. var. annuum) cultivars with universal resistance to phytophthora root rot and foliar blight (Phytophthora capsici Leon) have been commercially released. A reason for this limitation may be that physiological races exist within P. capsici, the causal agent of phytophthora root rot and phytophthora foliar blight. Physiological races are classified by the pathogen's reactions to a set of cultivars (host differential). In this study, 18 varieties of peppers were inoculated with 10 isolates of P. capsici for phytophthora root rot, and four isolates of P. capsici for phytophthora foliar blight. The isolates originated from pepper plants growing in New Mexico, New Jersey, Italy, Korea, and Turkey. For phytophthora root rot, nine of the 10 isolates were identified as different physiological races. The four isolates used in the phytophthora foliar blight study were all determined to be different races. The identification of physiological races within P. capsici has significant implication in breeding for phytophthora root rot and phytophthora foliar blight resistance.

Free access

Rachel E. Rudolph, Carl Sams, Robert Steiner, Stephen H. Thomas, Stephanie Walker and Mark E. Uchanski

Biofumigation is a sustainable method of soil management in cash crop rotations that can increase soil organic matter (SOM), moderate soil pH, suppress weeds and soilborne pathogens through glucosinolates (GSL), and increase water infiltration. This 2-year (2011–13) field study evaluated four different Brassica crops for their biofumigant potential in a chile pepper rotation system in southern New Mexico. The four cultivars included: three mustards (Brassica juncea ‘Caliente 61’, ‘Caliente 199’, and ‘Pacific Gold’) and one broccoli (Brassica oleracea var. botrytis ‘Arcadia’). As a result of concerns that these mustards could be hosts for nematodes, a greenhouse study was conducted in the second year to evaluate the biofumigant crops for their southern root-knot nematode (Meloidogyne incognita, RKN) host suitability and their seedling establishment in the presence of RKN. In Year 1 (2011), conditions were ideal, which resulted in high mustard biomass production and, consequently, significantly higher SOM and lower pH than the bare soil control plots. However, there were no chile pepper yield differences among treatments. Conditions were much less favorable in Year 2 and the resultant poor biomass production did not cause an increase in SOM as seen in Year 1. In the RKN greenhouse study, broccoli was the least susceptible biofumigant crop. After one nematode generation (683 cumulative heat units), RKN populations were less than half of the original inoculum level on the broccoli. However, RKN populations increased in the presence of ‘Caliente 61’, ‘Caliente 199’, and ‘Pacific Gold’. Overall, broccoli produced lower biomass and lower GSL concentrations than the mustard treatments but may be a valuable crop for growers with nematode issues because RKN populations decreased in its presence. Based on high biomass production and high GSL concentration, ‘Caliente 199’ showed the most potential as a biofumigant crop for southern New Mexico.

Free access

Rhiana F. Jones, Paul W. Bosland, Robert L. Steiner, Richard W. Jones and Mary A. O’Connell

Phytophthora capsici is responsible for multiple disease syndromes of Capsicum annuum but the resistance mechanism is still unknown. Evaluating gene expression during foliar blight can be used to identify expression patterns associated with resistance in Capsicum species. This study reports a direct comparison of gene expression changes during the foliar blight syndrome using two different races of P. capsici on C. annuum host plants with resistant and susceptible phenotypes to those races. Four genes were evaluated for differential expression following leaf inoculation with P. capsici. RNA isolated from leaves at three time points was used to quantify gene expression by quantitative real-time polymerase chain reaction (qRT-PCR). Of four genes tested, two had differential expression in response to P. capsici at 72 hours postinoculation, a xyloglucan-specific endo-β-1,4-glucanase inhibitor protein (XEGIP2) in susceptible cultivar New Mexico Heritage 6-4 (NMH6-4), and a C. annuum cell wall protein (CWP) in resistant Criollo de Morelos 334 (CM334). Both genes had a 5-fold increase in transcription in leaves over the control. These results suggest that both genes are playing a role in disease resistance to foliar blight.

Free access

Harmandeep Sharma, Manoj K. Shukla, Paul W. Bosland and Robert L. Steiner

Water saving, productivity, and quality of the chile pepper were evaluated under three irrigation treatments. Three drip irrigation treatments used were 1) control, where water was applied at the surface using two drip emitters; 2) partial root-zone drying vertically (PRDv), where subsurface irrigation was applied at 20 cm depth from soil surface; and 3) partial root-zone drying compartment (PRDc), where roots were divided into two compartments and irrigation was applied to one of the compartments on every alternate-day cycle for 15 days. Continuous measurements of soil water content were carried out during the growing seasons of 2013 and 2014, respectively. During both growing seasons, the stomatal conductance (g S) and net photosynthetic rates (Pn) were similar among all treatments including the control. In both PRD treatments, a higher rooting depth and root length density (RLD) than the control likely compensated for the water stress in dry soil zones by taking up more water from the water available parts of the root-soil system. In PRDc and PRDv treatments, 30% less water was applied than control without significant changes to plant stress expressed by stem water potential, plant height, capsaicinoid concentration, and yield. The increased irrigation water use efficiency (IWUE) demonstrated water saving potential of both PRD techniques for chile pepper production in water-limited arid environments.

Free access

Steven J. Guldan, Charles A. Martin, Jose Cueto-Wong and Robert L. Steiner

Five legumes [hairy vetch (Vicia villosa Roth.), barrel medic (Medicago truncatula Gaerth.), alfalfa (Medicago sativa L.), black lentil (Lens culinaris Medik.), and red clover (Trifolium pratense L.)] were interseeded into sweet corn (Zea mays L.) at last cultivation when sweet corn was at about the V9 (early) or blister (late) stage. The effect of legume interseeding on sweet corn yield, and late-season dry-matter and N yields of aboveground portions of the legumes was determined. Sweet corn yield was not affected by legume interseeding. In 1993, legume dry-matter yields were 1420 kg·ha–1 interseeded early and 852 kg·ha–1 interseeded late. Nitrogen yields were 49 kg·ha–1 interseeded early and 33 kg·ha–1 interseeded late. In 1994, dry-matter yields were 2760 kg·ha–1 interseeded early and 1600 kg·ha–1 interseeded late. Nitrogen yields were 83 kg·ha–1 interseeded early and 50 kg·ha–1 interseeded late. In 1993, barrel medic was the highest-yielding legume with dry matter at 2420 kg·ha–1 and N at 72 kg·ha–1 interseeded early, while red clover yielded the lowest with dry matter at 340 kg·ha–1 and N at 12 kg·ha–1 interseeded late. In 1994, dry-matter and N yields ranged from 4500 and 131 kg·ha–1, respectively, for early interseeded barrel medic to 594 kg·ha–1 and 16 kg·ha–1, respectively, for late interseeded red clover.

Free access

Steven J. Guldan, Charles A. Martin, Jose Cueto-Wong and Robert L. Steiner

Three legumes [hairy vetch (Vicia villosa Roth.), barrel medic (Medicago truncatula Gaerth.), and black lentil (Lens culinaris Medik.)] were interseeded into `New Mexico 6-4' chile pepper (Capsicum annuum L.) when plants were 20–30 cm tall (3 Aug., “early” interseeding) or when plants were 30–40 cm tall (16–17 Aug., “late” interseeding) in 1993 and 1994. Our objectives were to determine the effect of legume interseeding on cumulative chile yield, and late-season dry-matter and nitrogen yields of aboveground portions of the legumes. Legumes were harvested on 8 Nov. 1993 and 15 Nov. 1994. Chile yield was not significantly affected by legume interseeding. In 1993, legumes accumulated 57% more dry matter and 55% more N when interseeded 3 Aug. vs. 16 Aug. In 1994, legumes accumulated 91% more dry matter and 86% more N when interseeded 3 Aug. vs. 17 Aug. Aboveground dry-matter yields in 1993 ranged from 1350 kg·ha–1 for black lentil interseeded late to 3370 kg·ha–1 for hairy vetch interseeded early. Nitrogen yields ranged from 52 kg·ha–1 for black lentil interseeded late to 136 kg·ha–1 for hairy vetch interseeded early. In 1994, hairy vetch was the highest yielding legume with dry matter at 1810 kg·ha–1 and N at 56 kg·ha–1 interseeded early, while black lentil yielded the lowest with dry matter at 504 kg·ha–1 and N at 17 kg·ha–1 interseeded late. In the spring following each interseeding year, we observed that hairy vetch had overwintered well, whereas barrel medic and black lentil had not, except when a few plants of barrel medic survived the winter of 1994–95. Results from this study indicate that legumes can be successfully interseeded into chile in the high-desert region of the southwestern United States without a significant decrease in chile yield.

Full access

Steven J. Guldan, Charles A. Martin, William C. Lindemann, Jose Cueto-Wong and Robert L. Steiner

Hairy vetch (Vicia villosa Roth.), barrel medic (Medicago truncatula Gaerth.), and black lentil (Lens culinaris Medik.) were interseeded into `New Mexico 6-4' chile pepper (Capsicum annuum L.) when plants were 8 to 12 inches tall or 12 to 16 inches tall in 1993 and 1994. Hairy vetch overwintered well both years, whereas barrel medic and black lentil did not. Spring aboveground dry mass yields of hairy vetch averaged 2.11 and 2.57 tons per acre in 1994 and 1995, respectively, while N accumulation averaged 138 and 145 pounds per acre in 1994 and 1995, respectively. Forage sorghum [Sorghum bicolor (L.) Moench] dry mass yield and N accumulation were significantly higher following hairy vetch than following the other legumes or no-legume control. There was no significant difference between forage sorghum yields following barrel medic, black lentil, or the no-legume control. Fertilizer replacement values (FRV) for the legumes were calculated from regression equations for forage sorghum dry mass yield as a function of N fertilizer rate. FRV for hairy vetch were at least 7-times higher than for either barrel medic or black lentil. Hairy vetch interseeded into chile pepper and managed as a winter annual can significantly increase the yield of a following crop compared to a nonfertilized control.